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Abstract

A promising approach for brain-computer interfaces (BCIs) employs the steady-state visual

evoked potential (SSVEP) for extracting control information. Main advantages of these

SSVEP BCIs are a simple and low-cost setup, little effort to adjust the system parameters to

the user and comparatively high information transfer rates (ITR). However, traditional fre-

quency-coded SSVEP BCIs require the user to gaze directly at the selected flicker stimulus,

which is liable to cause fatigue or even photic epileptic seizures. The spatially coded SSVEP

BCI we present in this article addresses this issue. It uses a single flicker stimulus that

appears always in the extrafoveal field of view, yet it allows the user to control four control

channels. We demonstrate the embedding of this novel SSVEP stimulation paradigm in the

user interface of an online BCI for navigating a 2-dimensional computer game. Offline analy-

sis of the training data reveals an average classification accuracy of 96.9±1.64%, corre-

sponding to an information transfer rate of 30.1±1.8 bits/min. In online mode, the average

classification accuracy reached 87.9±11.4%, which resulted in an ITR of 23.8±6.75 bits/min.

We did not observe a strong relation between a subject’s offline and online performance.

Analysis of the online performance over time shows that users can reliably control the new

BCI paradigm with stable performance over at least 30 minutes of continuous operation.

Introduction

One of the most widely used visual BCI paradigms, featuring high classification accuracy and

information transfer rate (ITR), is based on steady-state visual evoked potentials (SSVEP). The

SSVEP is an electrophysiological brain response to periodically changing properties of a visual

stimulus [1]. The frequency response is narrow-banded and follows the stimulation frequency

(and its harmonics) up to at least 90 Hz [2].

The majority of the SSVEP BCI studies has utilized a visual spatial attention paradigm in

which the visual interface consists of a group of luminance- or contrast modulated flickering

stimuli placed at different locations. Each BCI command is usually associated with a visual

stimulus flickering at a distinct frequency. The users operate the system by shifting their
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attention overtly or covertly to one of these stimuli [3–6], leading to an enhanced SSVEP

response at the corresponding frequency. To date, high-performance SSVEP-BCIs have been

achieved mainly by employing an overt attention task [4] with flickering stimuli at a relatively

low frequency (i.e. < 20 Hz) which maximizes both the SSVEP responses and the attention-

related enhancement. However, directly gazing at these low-frequency flickering stimuli (overt

attention) can easily cause fatigue and even runs the risk of eliciting photic epileptic seizures

[7–10]. This constitutes a severe limitation of the long-term application of SSVEP-BCIs. To

alleviate visual strain, substantial efforts have been devoted towards the development of covert

attention-based BCIs [5,10–12], high-frequency SSVEP BCIs [13,14,7,10,15], and hybrid

SSVEP BCIs integrating other visual BCIs paradigms [16,17]. Nevertheless, the reported sys-

tems were either associated with a limited number of BCI commands or showed relatively low

information transfer rates.

A recently proposed SSVEP BCI paradigm, in which control channels are coded by their

spatial position rather than their flicker frequency or phase [18], may provide an alternative

route towards a practical SSVEP BCI with reduced visual strain. Instead of assigning each BCI

command a distinct flicker stimulus, this BCI paradigm employs only a single flicker, and BCI

commands are associated with non-flickering targets surrounding the SSVEP-generating

flicker stimulus. This approach rests on the observation that different relative positions

between the flicker stimulus and the foci of overt attention result in distinct topographies of

the SSVEP responses. The first offline study on 12 healthy volunteers revealed that up to 9 tar-

gets can be recognized with>90% accuracy (4 seconds trial duration). Besides the promising

performance, this spatially coded SSVEP BCI opens new possibilities for application design.

As the attention targets were non-flickering and did not require any other specific designs (e.g.

color, contrast, etc.), the flickering stimulus can be integrated in a variety of different back-

ground contexts, e.g. naturalistic images, gaming environments, etc.

To demonstrate the integration of this spatially coded SSVEP BCI in a user interface, and to

put the paradigm to the test of an online BCI, we developed an application scenario in which

users had to navigate a two-dimensional landscape of a simple computer game. By looking at

the 4 sides of a flickering square at the screen center, they could shift a virtual landscape and

thereby reach a given goal location. All users but one achieved reliable control of the move-

ments in the virtual environment and reached the goal location within the given time limit.

We evaluate their performance during the training session, in the online session, the relation

between the two performance measures, and the stability of the online performance over 30

minutes of operating the BCI. Our study demonstrates that this new SSVEP BCI type operat-

ing in closed-loop mode enables efficient long-term communication with the environment.

Methods

Subjects

Twelve healthy subjects (7 females and 5 males, mean age: 23.5 years, age range: 19–32) partici-

pated in this study. All of them had normal or corrected-to-normal vision and were free of

neurological and ophthalmological disorders. One subject reported a mild conjunctivitis, but

the resulting increase in eye blinks remained in the range of the other subjects. In accordance

with the Declaration of Helsinki, all subjects provided written informed consent prior to par-

ticipating in the experiments and received financial compensation for their participation. This

study was approved by the ethics committee of the medical association of the city of Hamburg,

Germany.

Each subject completed a training session that was immediately followed by an online ses-

sion. An experiment lasted about 1.5 hours.

Single-flicker online SSVEP BCI
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Visual stimulation

The visual input presented to the subjects consisted of the BCI stimulus on top of a 2-dimen-

sional map that displayed the game environment (see Fig 1).

The BCI stimulus in the center of the screen was composed of a flickering white square

(12x12 cm, 13.7˚ visual angle) surrounded by 4 small, static (i.e., non-flickering) squares

(0.7x0.7 cm, 1.6˚ visual angle) outside the four edges of the central square (north-N, east-E,

west-W, south-S). The flickering square (fstim = 15Hz) elicited the SSVEP, and the four small

squares indicated the target locations where the users should direct their gaze to. In the train-

ing session, the target indicators were white, and the gaze direction of the subjects was cued by

coloring the respective target red. During the online session, all four target indicators were

red. The BCI stimulus resembles the one we used in our previous offline study [18] when used

with 4 classes. Main differences are the circular shape and the doubled size (~26 cm diameter,

27˚ visual angle) that was used there as well as the location of the gaze targets at the fringe but

inside the flickering circle. Although a parametric exploration of the effect of the stimulus size

and shape (and other parameters) on the classification accuracy is needed, we suggest that a

follow-up offline study is more appropriate for this purpose.

The display of the game environment covered the remaining screen area and consisted of a

patterned green background with obstacles that were visualized by icons of towers and the

Fig 1. Annotated screenshot of the visual stimulation. The small white squares labeled N, W, S and E indicate where the subjects should focus their

gaze in order to move the landscape in the respective direction. In the training session, the target was cued by turning the color to red (in this example,

subjects should look at the N target).

https://doi.org/10.1371/journal.pone.0178385.g001
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goal position, represented by the icon of a princess. The environment remained static during

the training session. In the online session however, a shift of the environment in response to

the user’s command was animated with 2 s duration.

The stimulus was presented on an LCD computer monitor (24 in, HP EliteDisplay E241i,

1280x800 pixel resolution, 50 cm viewing distance).

Experimental paradigm

In the training session, subjects were cued to fixate all 4 target locations in random order. Each

target was cued for 4 seconds, and EEG was recorded simultaneously. After looking at all 4 tar-

gets, the stimulus disappeared for 1.5 s, before the next random sequence of targets was pre-

sented. Subjects could blink or swallow in this interval. Fifty sequences were presented in a

block. Then a short break of 3–5 min was administered. Two training blocks were recorded in

total. A training session lasted approximately 35–40 minutes. Compliance with the task was

checked intermittently using a webcam mounted at the top of the screen that was directed at

the subject’s face.

In the online session, the user was requested to move the game landscape by gazing at the

respective target indicators (N, E, W, S) so that the goal position (visualized by the cartoon

princess) moved step by step towards the center of the screen. After a successful recognition of

a movement direction that the user intended, the whole landscape moved one step in the

respective direction. During the animated movement of the environment, subjects could plan

the next step and blink or swallow. In each round of the game, the initial goal position was

always 12 steps away from the center; 6 steps in x-direction and 6 steps in y-direction. This

means that goal positions were always in one of the corners of the environment, and that at

least 12 steps were needed to reach it. In order to handle users who could not reliably control

the BCI, we introduced an upper step limit. If the subjects could not reach the target in 25

steps, they lost the game, and a new round was started for the next trial. If the subjects reached

the target in less than 25 steps, an encouraging message was shown, and the game continued

with the next trial. Initial goal positions were randomized across trials.

The stimulation software was written in MATLAB (The Mathworks, Natick, MA, USA)

using the Psychophysics Toolbox extension [19–21]. Software for stimulation, EEG recording

and the BCI ran on a regular desktop PC (HP Compaq Elite 8300).

EEG recording and data processing

A 32-channel EEG was recorded continuously using BioSemi’s ActiveTwo AD-box (BioSemi

Instrumentation, Amsterdam, The Netherlands). Electrodes were placed according to the 10–

20 international electrode position system. The lab streaming layer (LSL, https://github.com/

sccn/labstreaminglayer) was used to record EEG data and to synchronize them with the exper-

imental condition. Accurate synchronization of the EEG data with the flicker stimulus on the

screen was achieved by a photodiode in the lower right corner of the screen that was driven by

a smaller clone of the central flickering square and that was connected to the trigger input of

the EEG amplifier. All experiments were conducted in a typical office room without any elec-

tromagnetic shielding.

EEG data from the training session were preprocessed offline by a 1–80 Hz bandpass filter.

Eye blink and muscle artifacts were removed semi-automatically. In particular, episodes with

EOG and muscle artifacts were detected automatically, verified by visual inspection and

rejected manually. The first 500 ms after stimulation onset were discarded, resulting in an

effective trial length of 3.5 s. The data were then downsampled from 1024 Hz to 512 Hz. The

Single-flicker online SSVEP BCI
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two training datasets per subject were concatenated and used to calculate the offline classifica-

tion accuracy as well as to train the classifier.

In the online session, data epochs corresponding to the stimulation intervals were extracted

based on the event triggers that had been generated by the stimulus program. Then a 1–80 Hz

bandpass filter was applied to the signal. The CCA features were calculated as described below

and forwarded to the classifier which then recognized the movement direction that the user

had intended. This output was used to shift the landscape in the respective direction.

Feature extraction and classification

As the stimulation setup was designed to elicit distinct SSVEP power distributions on the sub-

ject’s scalp for each target direction, a straightforward method for inferring the attended target

is to apply spatial filters on the EEG data that maximize the output for the respective target,

and to use these filter outputs as feature vectors for classification. Details of the method are

given in [18], but the main processing steps will be described here.

We used canonical correlation analysis (CCA, [22]) to determine spatial filters Ac and Bc

that maximize the canonical correlation rc = [ρ1 . . . ρM] of the filtered EEG data AcX with a fil-

tered reference signal BcY for each of the four target directions c = 1 . . . 4. To obtain filters Ac

and Bc, we concatenated all trials from the training session when the subject was cued to look

at target location c and calculated the CCA with the M = 6 dimensional reference signal

Y ¼

sinð2pfstimtÞ

cosð2pfstimtÞ

sinð4pfstimtÞ

cosð4pfstimtÞ

sinð6pfstimtÞ

cosð6pfstimtÞ

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

:

Then, for each trial in the training data, a feature vector was composed by calculating the

canonical correlations rc (using the previously determined filters Ac and Bc) for all four targets

and concatenating them: [r1 r2 r3 r4]. These feature vectors together with the corresponding

target locations were used to train a multi-class linear discriminant analysis classifier [23].

In the online session, feature vectors were calculated like for the training data, and the out-

put of the classifier determined the direction in which the landscape was shifted.

Calculating ITR

For the data from the training session, ITR was calculated using the equation from [7]:

ITR ¼
60

T
log

2
C þ P log

2
P þ ð1 � PÞ log

2

1 � P
C � 1

� �

ð1Þ

Here, P is the classification accuracy, C the number of classes (C = 4) and T the effective trial

length (T = 3.5s).

The user intention was not tracked during the online session; hence, the classification accu-

racy P is not known. We determined however a lower bound of the online ITR by using Eq 1

and estimating the online classification accuracy in the following way. Under the assumption

that subjects followed the optimal strategy for approaching the target location, the classifica-

tion accuracy can be derived from the success of each individual classification with respect to

the goal. In each trial we therefore counted the number of steps that reduced the Euclidean
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distance to the goal position and divided it by the total number of steps made in this trial. This

approach considers the performance in the same way no matter whether the goal position was

finally reached or not. In fact we observed that several games were ‘lost’ when subjects were

only one or a few steps away from the goal position, and the round was terminated because the

fixed but arbitrary limit for the number of steps was reached. As subjects may not have fol-

lowed the optimal strategy all the time, the true classification accuracy in the online session

may have been higher than this estimate; therefore, the calculated online ITRs should be con-

sidered as a lower bound.

Results

First we analyzed the SSVEP response when subjects fixated the four different target indicators

during the training session. Fig 2 shows the corresponding SSVEP power topographies (A)

and phase-amplitude plots (B).

The SSVEP power topographies (Fig 2A) show the typical power maximum over occipital

and parietal areas. A systematic shift of the power maximum between right and left occipital

areas for targets E and W can be observed. When subjects gazed at the east direction, the

flicker stimulus appeared in the left visual hemifield; hence, an increase in the activity over the

contralateral, i.e. right hemisphere, can be observed. The opposite relation holds for the west

direction. When the flicker stimulus moves from a position above the horizontal midline to

below, i.e. when the subjects shift the gaze from target S to N, the region of maximal SSVEP

power shifts from an occipital position towards a centro-occipital region.

Polar plots of the single-trial SSVEP response at occipital electrode O1 can be seen in Fig

2B. Together, the plots show that distinct patterns emerge when subjects gaze at the different

targets, suggesting that a BCI based on the classification of spatial SSVEP amplitude and phase

responses is feasible.

Details of the classification accuracies and ITRs in the training phase and the online session

are given in Table 1. The average classification accuracies across subjects are 96.9±1.64% and

87.9±11.4% respectively, corresponding to average ITRs of 30.1±1.8 bits/min and 23.8±6.75

bits/min respectively.

To further evaluate the performance during the online session, we determined for each sub-

ject the number of games won, the average number of steps they needed to reach the goal posi-

tion and the time spent for all games (cf. Table 2). Out of 16 game rounds in total, subjects

won on average 12.7, taking 16.4 steps per game and spending 33 minutes for all rounds

together (won and lost). Whereas most subjects won 15 or all 16 games, subjects 10 and 12

reached the goal position only in 10 and 13 games respectively, and subject 11 failed to achieve

reliable control of the BCI.

We also analyzed the distribution of the number of steps that subjects needed to finish the

game. Fig 3 visualizes the frequency at which each subject finished a game in a particular num-

ber of steps.

The majority of subjects could win the game with no more than 21 steps, indicated by the

shallow increase of the average number of games won for more than 21 steps.

To assess whether the offline classification accuracy can predict the subject’s performance

when operating the online system, we computed the correlation coefficient between offline

and online classification accuracy. As the correlation is relatively low (r = 0.28), and the p-

value does not reach a significance threshold (p = 0.39), the offline classification accuracy

seems to have a low predictive value for the online performance. Even omitting the two poten-

tial outliers with the lowest online and offline accuracies respectively did not qualitatively

change this observation.

Single-flicker online SSVEP BCI
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From Table 1 it becomes evident that the performance of two subjects (10 and 11) in the

online session is markedly lower than that of the other subjects. The performance of these two

subjects in the offline session however is well within the range of the other subjects. In order to

figure out possible causes for this performance drop, we calculated the grand average across all

trials, irrespective of the target, for the offline session and for the online session separately and

compared the two SSVEP topographies. We quantified the similarity between online and off-

line topographies by the Pearson correlation coefficient and plotted it together with the online

classification accuracy in Fig 4B. Tellingly, this shows two clusters: one with the two subjects

that have low online classification accuracy and low similarity between the topographies, and

another one with the remaining subjects that have high online classification accuracy and high

similarity between the topographies.

To reveal if and how fatigue affects the performance of the BCI system, we analyzed the

development over time of the online classification accuracy (Fig 5A). Subjects started with a

Fig 2. SSVEP responses for a typical subject. (A) SSVEP power topographies for the four target directions. (B)

Phase of the SSVEP at electrode O1.

https://doi.org/10.1371/journal.pone.0178385.g002

Table 1. Classification accuracies and ITRs for all subjects.

subject number offline accuracy [%] offline ITR [bits/min] online accuracy [%] online ITR [bits/min]

1 96.5 29.6 92.7 27.8

2 98.1 31.5 96.7 29.9

3 98.8 32.4 95.4 28.8

4 98.9 32.5 86.6 21.3

5 95.8 28.9 92.8 26.3

6 97.4 30.6 94.3 27.4

7 98.1 31.5 96.9 30.1

8 97.6 30.8 89.4 23.7

9 95.7 28.7 91.8 25.7

10 96.3 29.4 75.1 16.5

11 96.4 29.5 57.1 6.62

12 93.1 26.2 85.7 21.6

mean 96.9 30.1 87.9 23.8

standard deviation 1.64 1.80 11.4 6.75

https://doi.org/10.1371/journal.pone.0178385.t001
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relatively low ITR in the first game round but quickly improved until the 7th round (with a

minor drop in the 6th round). From then on, performance generally seems to become more

variable but to stay at the same level. We used the number of lost games as an additional indi-

cator for the efficiency of the BCI. We could not observe a trend over the trials of the online

session though (see Fig 5B). In particular, we did not find an increase in the frequency of lost

games towards the end of the session, which would be expected if fatigue had affected classifi-

cation accuracy.

Discussion

Our study demonstrates the application of a spatially coded SSVEP BCI in closed-loop mode

for solving a 2-dimensional navigation task. A single flicker stimulus was utilized to elicit an

SSVEP response, and the user’s gaze direction relative to the stimulus caused distinguishable

power topographies that were automatically classified and used to control four movement

directions. Analysis of the online performance shows that most users can efficiently solve the

task, and that performance remains stable over more than 30 minutes of continuous

operation.

A comparison between the estimate of the ITR from the training data and the ITR of the

online system shows that the estimate is consistently higher, but that both values are neverthe-

less in the same range. We tested therefore whether effects of fatigue like decreased SSVEP

power or increased power in the alpha frequency range during the online session might have

caused this finding, but we could not observe a consistent change of these parameters between

the training and online sessions (data not shown). Therefore, the ITR difference may have

other causes. For example, subjects may have been more agitated in online mode, because it

was more interesting to play the game, and success or failure to reach the goal position affected

them emotionally. This may have impacted the SSVEP power and/or its spatial distribution,

leading to lower classification accuracy than in the training session. We therefore quantified

the similarity between the SSVEP topographies in the training and online session and observed

a clear separation between the subjects that showed low classification accuracy in the online

session and relatively low similarity between the topographies, and those subjects with high

online classification accuracy and high similarity of the topographies. As the spatial

Table 2. Quantitative evaluation of the online session. Session time is excluding breaks between trials.

subject number number of successful games mean step number to win a game online session time [min]

1 16 13.8 28

2 16 13.6 28

3 16 14.3 29

4 15 17.9 36

5 15 15.8 32

6 16 14.4 30

7 16 13.3 27

8 15 17.3 33

9 15 15.5 31

10 10 19.9 40

11 2 24.4 49

12 13 17 34

mean 12.7 16.4 33

standard deviation 4.09 3.21 6.26

https://doi.org/10.1371/journal.pone.0178385.t002
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distribution of the SSVEP response is the basis for the target classification, different distribu-

tions in the training and application phase may indeed causally affect the performance. In gen-

eral, subjects may also have voluntarily or involuntarily deviated from the optimal trajectory

which was stipulated for calculating ITRs in online mode. Therefore, it is reasonable to assume

that the true online ITRs are in general more similar to the offline ITRs than the conservative

approximations we made here.

Furthermore, we investigated whether the classification accuracy calculated offline on the

training data is predictive for the performance of the system in online mode. Interestingly, we

did not observe a strong correlation. Whereas all subjects achieved high offline classification

accuracies (all well above 90%), there was substantial variation of their online performances.

One explanation for the lacking correlation may be that the overall high offline accuracies lead

to a ceiling effect that does not allow for comparisons with accuracies along the full range

down to chance level. However, the current study corroborates the results of the offline analy-

ses in our previous study [18].

Fig 3. Number of steps that each participant needed to reach the goal position.

https://doi.org/10.1371/journal.pone.0178385.g003
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Fig 4. A) Correlation between the offline and online classification accuracies. B) Relation between online accuracy

and the similarity of EEG topographies between offline and online session. Dots are labeled with the subject number.

https://doi.org/10.1371/journal.pone.0178385.g004

Fig 5. Online performance over time. Average ITR across subjects (A) and number of lost games (B) for each trial in the online session.

Error bars show the standard error of the mean.

https://doi.org/10.1371/journal.pone.0178385.g005
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To date, spatial navigation applications have mostly employed either motor imagery or

SSVEP BCI paradigms. While motor imagery BCIs and their hybrid forms have achieved con-

siderable progress [24–26], ITRs are comparatively low (approximately 6.8 bits/min in [25]

and 11.9 bits/min in [26] using Eq 1). Although considerations about theoretical channel

capacities up to 50 bits/min have been made [27], temporal averaging to consolidate classifica-

tion results, the relative sluggishness of switching between mental states compared to the brisk-

ness of gaze shifts in SSVEP BCIs as well as the task demands keep the practical ITRs well

below this mark. Besides, motor imagery BCIs heavily depend on the subject’s ability to enter

and maintain distinct mental states and therefore are more susceptible to problems with ‘BCI

illiteracy’ [28].

SSVEP-based BCIs provide an alternative solution for people who perform poorly with

motor imagery BCIs. Whereas the spatially coded BCI we present here uses only a single flicker

stimulus, conventional frequency-coded BCIs for 2D navigation typically employ 4 flicker sti-

muli with different frequencies to encode the 4 movement directions. For example, the systems

described in [29–32] implemented the stimulus by 4 LEDs around the edges of a screen or on

a panel that represent the commands to navigate a robot or a wheelchair. Only few of the rele-

vant articles calculated the online ITR of the investigated BCI system, but from the data given

in these articles, we estimated 9.9 bits/min in [29], 17.24 bits/min in [30], and ~20 bits/min in

[31]. The ITR of 23.8 bits/min of the system we present here is well in this range. To our

knowledge, the currently fastest system of this type achieved around 44.3 bits/min [32].

Whereas subjects typically reported no or only little fatigue after the experiment, their experi-

ence and the performance were assessed only in a few trials (2–5 trials [31,32]) or even in a sin-

gle trial [29,30]. In contrast, testing performance by letting subjects repeatedly solve the same

task over about 30 minutes allows us to arrive at a more reliable assessment of the long-term

stability of the system. In our study, the overall performance stayed relatively stable with

increasing trial-to-trial variability over time.

A common approach to reduce fatigue and other problems caused by directly looking into

the flicker stimuli in frequency-coded SSVEP BCIs is to employ higher flicker frequencies.

Coding the control channels by frequencies in the range from 34 to 40 Hz has proven to be

successful in achieving reliable target classification while at the same time reducing visual

strain [30–32]. It seems straightforward to employ higher flicker frequencies for the spatially

coded SSVEP BCI we present in this article as well, and we will dedicate a separate study to the

experimental validation.

Using only a single flicker stimulus considerably simplifies the stimulation setup and the

user interface of SSVEP BCIs. This allows users to control the BCI in an intuitive yet reliable

way. The fact that in a spatially coded SSVEP BCI the flicker stimulus appears always in the

peripheral field of view suggests that visual fatigue may be reduced in comparison to conven-

tional frequency-coded SSVEP BCIs, but a direct comparison of both approaches would be

needed to test this hypothesis.
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