
Neuron

Review
Intrinsic Coupling Modes: Multiscale Interactions
in Ongoing Brain Activity
Andreas K. Engel,1,* Christian Gerloff,2 Claus C. Hilgetag,3,4 and Guido Nolte1
1Department of Neurophysiology and Pathophysiology
2Department of Neurology
3Department of Computational Neuroscience
University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
4Department of Health Sciences, Boston University, MA 02115, USA
*Correspondence: ak.engel@uke.de
http://dx.doi.org/10.1016/j.neuron.2013.09.038

Intrinsic coupling constitutes a key feature of ongoing brain activity, which exhibits rich spatiotemporal
patterning and contains information that influences cognitive processing. We discuss evidence for two
distinct types of intrinsic coupling modes which seem to reflect the operation of different coupling mecha-
nisms. One type arises from phase coupling of band-limited oscillatory signals, whereas the other results
from coupled aperiodic fluctuations of signal envelopes. The two coupling modes differ in their dynamics,
their origins, and their putative functions and with respect to their alteration in neuropsychiatric disorders.
We propose that the concept of intrinsic coupling modes can provide a unifying framework for capturing
the dynamics of intrinsically generated neuronal interactions at multiple spatial and temporal scales.
Introduction
Ongoing activity has been both nuisance and enigma to neuro-

scientists for a long time. Early physiological and modeling

studies assumed that ongoing neural activity corresponds to

noise resulting from random signal fluctuations without any

meaningful patterning or computational relevance. In the 1970s

and 1980s, this notion was intimately related to another key

assumption. It was generally believed that the brain is a passive

stimulus-processing device that builds stimulus-driven repre-

sentations in a bottom-up manner and ‘‘idles’’ when it is not

fed with sensory data.

Meanwhile, a new paradigm has emerged that considers the

brain as inherently active and constantly creating predictions

about upcoming stimuli and events (Engel et al., 2001; Friston,

2005; Arnal andGiraud, 2012). Due to this shift in background as-

sumptions, the intrinsic dynamics of brain circuits, that is, those

aspects of dynamics not enforced by a stimulus or task, started

to move into the focus and has now become a major research

theme in systems neuroscience. Opposing the classical view, it

soon became clear that ongoing activity carries information

and is endowedwithmeaningful spatiotemporal structure, which

reflects previous learning and can bias the processing of stimuli

(Engel et al., 2001; Deco and Corbetta, 2011). The latter was first

demonstrated by in vivo studies in cats combining microelec-

trode recordings with optical imaging (Arieli et al., 1996). These

studies showed that low-frequency spatiotemporal fluctuations

in ongoing activity could account for most of the trial-to-trial vari-

ability in sensory response amplitudes.

Importantly, these fluctuations of ongoing activity were

strongly synchronized across spatially distributed neuronal

populations (Steriade et al., 1996a; Contreras and Steriade,

1997; Destexhe et al., 1999), suggesting that processing of stim-

uli is biased not just by fluctuations in a local neuronal population

but, actually, by the dynamics of coherently active networks.
These coupling patterns in ongoing activity did not only involve

low-frequency fluctuations in the delta-band (1–4 Hz) or below

(Steriade et al., 1993; Contreras and Steriade, 1997; Destexhe

et al., 1999), but also faster frequencies in the theta- (5–8 Hz),

alpha- (9–12 Hz), beta- (13–30 Hz), and gamma-frequency range

(>30 Hz) (Steriade et al., 1996a; Destexhe et al., 1999). Oscilla-

tions in these frequency bands are well known to be involved

in a broad variety of cognitive processes (Singer, 1999; Fries,

2009; Engel and Fries, 2010; Siegel et al., 2012).

Oscillatory ongoing activity had also long been known from

electroencephalography (EEG) studies of the human brain. How-

ever, the first demonstrations of spatially organized networks in

ongoing activity were achieved using neuroimaging approaches

such as fMRI (Biswal et al., 1995) and positron-emission tomog-

raphy (PET) (Raichle et al., 2001). These studies establishedwhat

became known as ‘‘resting state networks,’’ that is, networks of

brain areas that show correlated fluctuations in the absence of a

stimulus or task that the subject is engaged in (Fox and Raichle,

2007; Raichle, 2010; Deco and Corbetta, 2011; Corbetta, 2012).

In the past decade, a number of resting state networks have

been extensively characterized using fMRI-based approaches.

These include the default-mode and the dorsal attention

network, as well as executive control, visual, auditory, and

sensorimotor networks (Figure 1). Classically, the concept of

resting state networks has been understood mainly in func-

tional-anatomical terms, and it has been employed as a tool to

map the structural organization and parcellation of brain systems

(Yeo et al., 2011; Buckner et al., 2013).

Asmeasured by fMRI, such networks show very slow (<0.1 Hz)

temporal fluctuations that are coupled across different brain re-

gions. An important shortcoming of fMRI approaches is that fluc-

tuations on faster timescales (that is, timescales commonly

analyzed in neurophysiological data) are not captured. For this

reason, analysis of fast dynamics has largely been missing in
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Figure 1. fMRI-Based Approaches for Analysis of ICMs
(A) Resting-state networks revealed by analysis of fMRI signals. Seed-based analysis of BOLD signal correlation across different regions gives rise to typical
network patterns in resting activity. Modified from Raichle (2010).
(B) Functional connectivity can be detected by correlating the BOLD signal across different regions. In this example, the posterior cingulate cortex (PCC) was
taken as a seed region. Top: maps of positive (warm colors) and negative (cool colors) correlations with the seed region. Bottom: single run BOLD time courses for
PCC (yellow), medial prefrontal cortex (MPF, orange), and intraparietal sulcus (IPS, blue). Positive correlations with the seed region identify the default mode
network, which includes midline regions such as PCC and MPF, as well as regions in angular gyrus and superior frontal sulcus regions. Modified from Fox et al.
(2005). Copyright National Academy of Sciences, USA.
(C) Similarities between BOLD correlation patterns in the human and monkey brain. Maps of the dorsal attention network (blue regions) generated by seeding the
lateral intraparietal area (LIP) in humans (top) and macaque monkeys (bottom). In both species, the network is distinguished by correlated activity between LIP
and other regions of IPS, the frontal eye field (FEF), and visual motion areas (MT). Note that the network is identical to the one appearing in blue color in (B).
Modified from Corbetta (2012).
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studies of resting state networks (Deco et al., 2011), and it is only

recently that novel methods have become available allowing for

better characterization of frequency-specific coupling in ongoing

activity using EEG or magnetoencephalography (MEG) (Hipp

et al., 2012; Hillebrand et al., 2012; Marzetti et al., 2013).

In this Review, we specifically focus on the large-scale

dynamics of ongoing activity and on the investigation of coupling

using neurophysiological methods such as EEG, MEG, or in vivo

animal recordings. As we will argue, oscillatory dynamics and

frequency-specific coupling across brain regions are particularly

important for the characterization of functional networks in

ongoing activity. In the following, we will use the concept of

‘‘intrinsic coupling modes’’ (ICMs) to denote coupling that is

not imposed by the current stimulus or action context. As will

be discussed below, ICMs exhibit characteristic spectral and

spatial signatures, which can be complex in nature and are likely

to change dynamically over time. We hypothesize that ICMs do

not represent context-invariant networks but spatiotemporal

coupling patterns that are modified in a context- and learning-

dependent manner. For example, the same network might
868 Neuron 80, November 20, 2013 ª2013 Elsevier Inc.
exhibit different ICMs at different levels of vigilance; similarly,

one particular cortical region could engage in different ICMs,

possibly even in the same epoch. Furthermore, we assume

that ICMs do not only emerge during rest but in fact also occur

during processing of stimuli or execution of a task, since there

is always substantial ‘‘background’’ ongoing activity unrelated

to the particular ‘‘foreground’’ context.

In the following sections, we will discuss evidence suggest-

ing that ICMs, as emergent features of network dynamics, are

particularly important in shaping neural and cognitive process-

ing. It will become evident that two types of ICMs can be distin-

guished that differ in their dynamics, the underlying coupling

mechanisms and their putative functions. One type arises from

phase coupling of band-limited oscillatory signals, whereas the

other results from coupled aperiodic fluctuations of signal enve-

lopes. In the following, we will designate these two types of

coupling as ‘‘phase ICMs’’ and ‘‘envelope ICMs,’’ respectively

(Table 1). As we will propose, the concept of ICMsmight provide

a framework for describing the dynamics of ongoing activity

at multiple spatial and temporal scales. We suggest that



Table 1. Features of Envelope and Phase ICMs

Feature Envelope ICMs Phase ICMs

Recording method fMRI, MEG, EEG, LFP, spike activity MEG, EEG, LFP, spike activity

Coupling measure Envelope correlation (amplitude or power

correlation, correlation of BOLD signals)

Phase coupling (coherence, imaginary coherence)

Typical frequency range Below 0.1 Hz 1–150 Hz

Dynamics Scale-free (aperiodic) Band-limited oscillations (slow-wave, delta,

theta, alpha, beta, gamma oscillations)

Spatial range From local (within regions) to large-scale

(cross-regional) coupling

From local (within regions) to large-scale

(cross-regional) coupling

Relation to structural connectivity Close Variable

State dependence Low High

Relation to learning and plasticitya Might modulate plasticity on slow timescales Trigger spike-timing-dependent plasticity

Cognitive and computational

significancea
Modulate performance in sensory and

cognitive tasks

Encode priors for processing of perceptual/cognitive

contents

Association with disordersa Might be most severely affected if structural

network alteration predominates

Changed in disorders with structural or functional

network alteration

Putative functiona Regulate the activation of neural populations

or brain regions

Regulate the integration and flow of cognitive

contents
aEntries largely represent hypotheses requiring further testing.
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characterizing ICMs may substantially advance our understand-

ing of the mechanisms underlying cognition and neuropsychi-

atric disorders.

Revealing ICMs
A number of different approaches can be used for revealing

ICMs, which differ in terms of the signals acquired, the spatial

scale of the measurements, and the invasiveness of the tech-

nique. The most widely used noninvasive approach is the

fMRI-based analysis of ongoing fluctuations of blood oxygen

level-dependent (BOLD) signals that has been applied in both

humans and in animals (Fox and Raichle, 2007; van den Heuvel

and Hulshoff Pol, 2010; Corbetta, 2012; Hutchison and Everling,

2012). A straightforward approach consists in the extraction of

the BOLD signal time course from a region of interest and

computation of its correlation with that of other regions

(Figure 1B). This correlation provides a measure of ‘‘functional

connectivity’’ (van den Heuvel and Hulshoff Pol, 2010; Corbetta,

2012) between the ‘‘seed’’ region and other brain areas (Figures

1B and 1C). As an alternative, model-free methods can be

applied that do not require the a priori definition of a seed region.

Numerous studies have used independent component analysis,

which represents a data-driven approach that yields a set of

spatially independent networks, each with associated time

course of BOLD fluctuations (Cole et al., 2010). The results

obtained with these methods yield a rather consistent picture

of networks distinguished by correlated slow BOLD fluctuations.

UsingMEGandEEG, it becomespossible to study ICMsacross

a broad range of timescales and in a spectrally resolved manner.

This can also be achieved by invasive recording of local field

potentials (LFPs) or spike activity. Due to their millisecond time

resolution, the information captured by these neurophysiological

recordings is considerably more complex than what can be

obtained from fMRI measures. In particular, coupling across

different neural populations or brain regions can be quantified in
a frequency-specific manner. For the study of ICMs, functional

connectivity in MEG, EEG, or LFP data can be quantified by a

number of different correlation measures that are similar to those

used in fMRI data analysis (Lachaux et al., 1999;Nolte et al., 2004;

Hippetal., 2012).Awidely usedapproach iscoherence,which is a

normalizedmeasure of the linear relationship between oscillatory

waves that adopts a high value if the signals are similar in

amplitudes and aligned in their phases. Coupling measures re-

flectingprimarily the latter arephasecoherenceor thephase lock-

ing value (Lachaux et al., 1999). Therefore, these arewell suited to

quantifywhatwecall phase ICMs (Table 1). Several recent studies

have applied correlation measures to the amplitude or power

envelopes of the recorded signals, rather than to the phase of

the underlying oscillations (de Pasquale et al., 2010; Brookes

et al., 2011, 2012; Hipp et al., 2012). Analysis of such signal enve-

lopes can be used to capture slow fluctuations similar to what is

provided by the BOLD imaging (Laufs et al., 2003; Tagliazucchi

et al., 2012a). Both the analysis of envelope correlations in elec-

trophysiological signals and of correlated BOLD fluctuations

yields what we designate as envelope ICMs (Table 1).

An important caveat in the study of ICMs by EEG or MEG is

that, due to their limited spatial resolution, these methods are

prone to signal mixing artifacts, which are especially severe for

estimates of brain interactions (Nolte et al., 2004; Stam et al.,

2007a). Through volume spread, any active source contributes,

in weighted manner, to the signals at all sensors (Figure 2A).

This can give rise to spurious signal correlations and, thus,

distort connectivity measures. Several methods have been sug-

gested to address this problem, which are based on the notion

that volume spread contributes to apparent coupling with negli-

gible delay, whereas true neuronal communication also occurs

at other delays. One possibility is to analyze the imaginary part

of coherence, which, if significant, cannot be explained by vol-

ume spread (Nolte et al., 2004). Subsequent studies have intro-

duced relatedmeasures such as the phase lag index (Stam et al.,
Neuron 80, November 20, 2013 ª2013 Elsevier Inc. 869
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Figure 2. Neurophysiological Investigation of ICMs
(A) Volume spread leads to source mixing, because each sensor measures signal contributions from different sources.
(B) Analysis of coupling can be based on using amplitude envelopes (green) or (if squared) power envelopes. Bottom: preprocessing of recorded signals by phase
orthogonalization eliminates phase-aligned signal components.
(C) Resting state coupling patterns revealed by correlation of power envelopes have a specific spectral profile, characterized by the frequencies of the underlying
neuronal oscillations (mainly in the alpha and beta band) and the frequencies at which signal envelopes are correlated (mostly below 0.1 Hz).
(D) Envelope correlation reveals spatially specific coupling between homologous sensory areas in both hemispheres.
(E) Graph-theoretical analysis reveals specific coupling patterns. Analysis of betweenness (reflecting the number of shortest paths through each node) in the beta
band reveals a bilateral network involving dorsolateral (DLPF) and medial prefrontal (MPF), lateral parietal (LP), and temporal (TMP) regions. (C), (D), and (E) are
modified from Hipp et al. (2012).
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2007a). Another approach that has recently been introduced

has used phase orthogonalization of oscillatory signals from

different sources before analyzing power envelope correlations

(Figure 2B) (Hipp et al., 2012). This is equivalent to removing,

after Fourier transformation, those components that have the

same phase for the two signals. This method is insensitive to

trivial correlations arising from two sensors seeing the identical

signal component and enables the selective study of true

neuronal interactions from MEG or EEG recordings (Figures 2D

and 2E) (Hipp et al., 2012; Brookes et al., 2012). It should be

noted, however, that this comes at the cost of also discarding

true zero-phase synchrony, which is known frommicroelectrode

recordings to be abundant in the brain (Singer, 1999; Engel et al.,

2001). For studying ICMs, it is also highly interesting to quantify

functional relationships between waves of different frequencies

(Jensen and Colgin, 2007; Palva and Palva, 2011). Measures

such as n:m phase locking for nsm, phase-amplitude coupling,

or amplitude-amplitude coupling can reveal nonlinear coupling

across different frequencies, which is also less susceptible to

volume spread artifacts.

Functional connectivity, in whatever form, can in principle

be estimated between all pairs of voxels specified on a grid or
870 Neuron 80, November 20, 2013 ª2013 Elsevier Inc.
surface. It is essentially impossible to visualize such a connectiv-

ity matrix in its complete form and hence approaches using

graph-theoretical measures (Bullmore and Sporns, 2009) have

become popular to characterize ICMs with a small set of param-

eters for each voxel. Beyond data compression, this representa-

tionmay indicate general properties of brain connections having,

for instance, small world topology, in which there are many local

but few remote connections, such that the neural nodes are

generally connected by short paths (Bullmore and Sporns, 2012).

Neurophysiology of ICMs
Correlation patterns in ongoing activity were first described in

animal studies. Early investigations in the cortex of cats reported

phase ICMs at various timescales, ranging from coupled ‘‘slow-

wave’’ oscillations in the range of 1 Hz to coupling of oscillations

in the gamma band (Amzica and Steriade, 1995; Steriade et al.,

1996a, 1996b; Contreras and Steriade, 1997; Destexhe et al.,

1999). Coupling of slow-wave oscillations was found to occur

over large distances, even between widely separate cortical

areas, and to involve subcortical regions such as thalamus or

striatum (Amzica and Steriade, 1995; Contreras and Steriade,

1997; Destexhe et al., 1999; Volgushev et al., 2011). Faster



Neuron

Review
cortical oscillations were spatially much more restricted in their

coherence (Steriade et al., 1996b; Destexhe et al., 1999), but

they were also coupled with ongoing fast rhythms in the thal-

amus (Steriade et al., 1996a). Interestingly, coherence of slow

rhythms was temporally sustained, while coupling of beta and

gamma activity strongly fluctuated over time (Destexhe et al.,

1999). Importantly, coupling in all frequency bands could occur

with phase lags close to zero (Steriade et al., 1996b; Contreras

and Steriade, 1997). Optical imaging studies using voltage-sen-

sitive dyes produced similar results, revealing large-scale spatial

coupling of ongoing oscillations that was particularly widespread

for low frequencies (Arieli et al., 1996).

A study of ICMs in the visual cortex of awake monkeys (Leo-

pold et al., 2003) investigated coupling both for the phase of

ongoing oscillations and for their amplitude envelopes (cf.

Figure 2B). Across the array of implanted electrodes, phase

coupling decreased with increasing spatial separation and was

inversely related to the frequency. Interestingly, a different

pattern was revealed for the amplitude envelope correlations.

Envelopes showed predominantly slow correlations (<0.1 Hz),

which achieved very high values even over large distances (Leo-

pold et al., 2003). This was particularly true for the amplitude

envelopes of gamma-band oscillations that, in terms of their

phase, showed much weaker coupling across distance. This

seems interesting because states of global synchronization in

the brain are typically associated with lower frequencies such

as slow-wave oscillations or delta or alpha waves (Destexhe

et al., 1999; Supp et al., 2011).

In the human brain, resting state dynamics has been explored

using EEG or MEG mainly in the context of neuropsychiatric dis-

orders (see below) and studies focusing on phase or envelope

ICMs using these methods in the healthy brain have remained

scarce. Envelope ICMs have been studied using intracranial

recordings during presurgical clinical testing in epilepsy patients

(Nir et al., 2008; He et al., 2008; Jerbi et al., 2010; Keller et al.,

2013). Simultaneous recordings of unit activity and LFPs from

left and right auditory cortex revealed strongly correlated fluctu-

ations of firing rate and LFP power envelopes across the hemi-

spheres (Nir et al., 2008). Similarly to what has been reported

in monkeys (Leopold et al., 2003), signal envelope correlations

were particularly robust for high-frequency activity. Gamma-

band power envelope correlations have also been reported for

sensorimotor networks (He et al., 2008), which were low for

slow-wave sleep but high for REM sleep and awake state.

Task-related decreases in gamma-band power have been

demonstrated in the default-mode network (Jerbi et al., 2010).

In addition, anticorrelated gamma-band power fluctuations

for different networks have been observed in invasive human

recordings (Keller et al., 2013). Several EEG studies have sug-

gested that the dynamics of the slow fluctuations giving rise to

envelope ICMs may be scale-free, that is, not characterized by

defined peaks in the power spectrum (Linkenkaer-Hansen

et al., 2001; He et al., 2010; Palva and Palva, 2011).

Only recently, a number of studies have aimed to investigate

the neurophysiology of ICMs by combining noninvasive MEG

recordings with source space analyses. Several of these studies

used amplitude or power envelope correlations (de Pasquale

et al., 2010; Brookes et al., 2011, 2012; Hipp et al., 2012;
de Pasquale et al., 2012), while others employed phase coher-

ence (Hipp et al., 2011; Bardouille and Boe, 2012), phase lag

index (Hillebrand et al., 2012), or imaginary coherence (Marzetti

et al., 2013). An interesting result is that plain correlation of signal

envelopes yields spatially unspecific correlation patterns char-

acterized by high correlation of the seed with neighboring voxels

and amonotonic drop off to more distant sites (Hipp et al., 2012).

While also comprising true interactions, such patterns are likely

to reflect, to a substantial amount, spurious correlations arising

from volume spread (Nolte et al., 2004; Hipp et al., 2012). How-

ever, ICM dynamics can be recovered if correlation patterns re-

sulting from volume conduction are suppressed before analyzing

functional connectivity (Hipp et al., 2012; Brookes et al., 2012;

Hillebrand et al., 2012; Marzetti et al., 2013).

A recent study that successfully employed this approach for

investigation of envelope ICMs has used phase orthogonali-

zation (Figure 2B) to remove zero-phase coupling (Hipp et al.,

2012). Analysis of correlations among power envelopes revealed

spatially specific coupling patterns. For instance, signal power

was correlated between homologous sensory areas of the

two hemispheres (Figure 2D), which matches similar patterns

observed in BOLD signals (Figure 1A). Overall, ICMs were

most prominent in the alpha and beta band. The power envelope

fluctuations were coupled at very slow frequencies below 0.1 Hz

(Figure 2C), suggesting a close correspondence to correlated

BOLD activity fluctuations (Fox and Raichle, 2007; Deco and

Corbetta, 2011; Raichle, 2010). The data indicate that this

approach can reveal a rich set of spectral signatures for func-

tional networks. Analysis of coupling in different frequency

ranges exposes distinct sets of hubs. For interactions in the

beta band, these are located in dorsolateral prefrontal, lateral

parietal, and temporal cortex (Figure 2E). In contrast, theta-

band interactions involve major hubs in the medial temporal

lobe, and gamma-band hubs can be observed in sensorimotor

cortex (Hipp et al., 2012). An important finding is that coupling,

as revealed by envelope correlations, can dissociate from the

spatial distribution of local signal power. Another MEG study

employing a related approach has provided similar results

(Brookes et al., 2012).

A recent study of phase ICMs employing the phase lag index

has revealed somewhat different patterns of highly connected

regions that differ across frequency bands (Hillebrand et al.,

2012). In the alpha band, the most strongly connected regions

were visual and posterior cingulate cortex. In the beta band,

this involved sensorimotor and parietal cortex, and in the gamma

band, temporal and parietal areas showed high functional con-

nectivity. Phase ICMs have also been mapped in a recent study

that focused on coupling in the dorsal attention network (Marzetti

et al., 2013). Significant delta- and alpha-band interactions were

observed between homologous regions of the attention network

in the left and right hemisphere. Moreover, this network showed

coupling in the alpha band to visual regions, aswell as beta-band

interactions with sensorimotor regions. Taken together, these

studies seem to provide evidence that phase ICMs can disso-

ciate from envelope ICMs, but further studies will be required

to elaborate this in greater detail.

An important question is to what extent the neurophysiological

signatures of ICMs match their MRI-based characterization. The
Neuron 80, November 20, 2013 ª2013 Elsevier Inc. 871
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relation between LFP and BOLD signals has been the subject of

a number of studies. BOLD fluctuations seem to correlate best

with the slow power envelope fluctuations observed for LFPs

and MEG or EEG signals (Logothetis et al., 2001; Leopold

et al., 2003; Nir et al., 2007; He et al., 2008). In particular, this

holds for the gamma band, but lower frequencies have also

been found to be related to the BOLD signal (He et al., 2008; Ma-

gri et al., 2012; Keller et al., 2013). This is supported by studies

that have employed direct coregistration of ongoing EEG or

LFPs with BOLD activity (Shmuel and Leopold, 2008; Schölvinck

et al., 2010; Tagliazucchi et al., 2012a). It has been suggested

that slow changes in both BOLD signal and power envelopes

of oscillatory signals, may reflect endogenous fluctuations of

neuronal excitability, which occur in a coupled manner across

different cortical and subcortical regions (Leopold et al., 2003;

Deco andCorbetta, 2011). Taken together, these studies provide

evidence that BOLD coupling analyses primarily reveal envelope

ICMs, thus converging with neurophysiological analyses of

envelope correlations.

The studies discussed above suggest that spectrally and

temporally resolved analyses of ICMs can provide important

information, beyond what can be revealed by BOLD connectivity

(Laufs, 2008; Deco et al., 2011). First, this concerns the fast

dynamics of ongoing activity. At present, phase ICMs cannot

be revealed by fMRI-based investigations. Spectral signatures

can differ substantially across networks and hubs, which are

not captured by the BOLD dynamics (Laufs, 2008; Jann et al.,

2010; Hipp et al., 2012). Second, frequency-specific analyses

are likely able to reveal a richer dynamics of interactions than

reflected by BOLD connectivity. Thus, for instance, coupling

hasbeenshown tobehighly variable across epochs (dePasquale

et al., 2012) and tooccur across different subnetworks definedby

BOLD correlations (Marzetti et al., 2013). Third, connectivity pat-

terns revealed by BOLD seem to be quite stable across brain

states and are observed even under deep anesthesia (Vincent

et al., 2007). However, temporal and spectral characteristics of

ongoing activity can change profoundly in anesthesia or deep

sleep compared to the waking state (Destexhe et al., 1999; van

der Togt et al., 2005; He et al., 2008; Supp et al., 2011). Fourth,

there is substantial evidence for cross-frequency coupling (Ster-

iade et al., 1996b; Monto et al., 2008; Schroeder and Lakatos,

2009; Palva and Palva, 2011) in ongoing activity that cannot be

captured by fMRI-based analyses.

Taken together, the studies discussed above demonstrate a

close correspondence between the results obtained in animals

and in humans. The data suggest that ICMs occur on a broad

range of spatial and temporal scales, involving two distinct types

of dynamics that rise to phase ICMs and envelope ICMs, respec-

tively (Table 1). Phase ICMs are defined by phase coupling and

involve oscillatory signals with band-limited dynamics, which

occur at frequencies between 1 Hz (slow-wave oscillations) to

about 150 Hz (fast gamma-band oscillations). Envelope ICMs

can be uncovered by correlation of signal envelopes or BOLD

time courses. They comprise presumably aperiodic (scale-free)

activity fluctuations that typically show most of their energy at

frequencies below 0.1 Hz. Thus, they may reflect the coactiva-

tion of neuronal populations on slow timescales ranging from

several seconds to minutes.
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Origins of ICMs
Key questions are how ICMs arise, which factors modulate their

expression, and whether these differ in their relevance for the

emergence of envelope and phase ICMs. Considering these

issues, it is important to distinguish the mechanisms giving rise

to local activity fluctuations from those that mediate the coupling

across spatially separate neuronal populations. In the following,

we focus on the latter.

A straightforward hypothesis is that ICMs may be determined

by the underlying structural connectivity. Evidence is available

that this may hold, at least in part, for envelope ICMs. Studies

in monkeys have shown that BOLD correlation patterns match

with known anatomical connectivity (Vincent et al., 2007; Wang

et al., 2013). Studies in humans have also related functional

BOLD coupling to structural connectivity data. Several investiga-

tions reported consistent identification of fiber tracts linking

regions within networks defined by BOLD correlation (Hagmann

et al., 2008; Greicius et al., 2009). However, structural connectiv-

ity seems to account only for about half of the variance in BOLD

functional connectivity (Skudlarski et al., 2008; Honey et al.,

2009). Indeed, BOLD coupling is not only mediated through

direct connections but can also occur through polysynaptic con-

nections (Vincent et al., 2007; Damoiseaux and Greicius, 2009)

and, conversely, functional coupling can be absent despite the

presence of structural connections (Honey et al., 2009). Taken

together, the available data show that envelope ICM dynamics

is only partially, but not completely, determined by structural

connectivity (Damoiseaux and Greicius, 2009; Deco and

Corbetta, 2011).

Very likely, the same holds true for phase ICMs, but quantita-

tive studies relating phase ICMdynamics to structural connectiv-

ity are lacking. It has been shown that phase coupling of cortical

oscillations requires corticocortical connections (Engel et al.,

1991; Singer, 1999), but there is abundant evidence that

structural connectivity does not strictly determine phase ICMs.

Rather, factors relating to stimulus context, task, or cognitive

setting strongly modulate the coupling of neuronal oscillations

(reviewed in Singer, 1999; Engel et al., 2001; Fries, 2009; Engel

and Fries, 2010; Siegel et al., 2012). The notion that phase

ICMs may be less determined by structural connectivity than

envelope ICMs is also supported by modeling studies exploiting

the monkey connectome (Honey et al., 2007).

An additional important factor determining functional connec-

tivity are conduction delays, particularly in long-range pathways,

which have been shown to directly influence the coherence of

neuronal oscillations (König and Schillen, 1991). Interestingly,

delays seem not only relevant for phase ICMs but also for enve-

lope ICMs. This has been addressed in models that investigated

the dynamics of the monkey connectome, showing that non-

vanishing delays can be critical for the emergence of spatially

coordinated slow fluctuations (Ghosh et al., 2008; Deco et al.,

2009, 2011).

Evidently, some of the early research on envelope ICMs

started out with the assumption that some of these were related

to particular brain states (e.g., the default mode network being

related to a ‘‘resting state’’). However, envelope ICMs actually

seem to be relatively robust against global state changes.

As shown by studies in monkeys, BOLD correlation patterns
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observed in the awake state are largely unchanged in sleep

(Larson-Prior et al., 2011) or under anesthesia (Vincent et al.,

2007). This might relate to the observation that BOLD fluctua-

tions correlate with power envelopes of neural signals in multiple

frequency ranges (Schölvinck et al., 2010; Magri et al., 2012).

Phase ICM dynamics, in contrast, seems strongly susceptible

to state changes. Both the spectral characteristics and the

strength of coupling in phase ICMs change profoundly in anes-

thesia or deep sleep compared to the waking state. Indeed,

changes in arousal were shown to shift the predominant fre-

quency band and the spatial ranges at which coupling of ongoing

oscillations occurs (Destexhe et al., 1999; van der Togt et al.,

2005; He et al., 2008; Supp et al., 2011). Phase ICMs have

long been known to be critically influenced by neuromodulators

involved in the regulation of global brain states (Deco and Thiele,

2009). For instance, activation of cholinergic brain stem nuclei

enhances gamma-band coherence in cortical networks (Munk

et al., 1996). As a possible mechanism, modeling studies sug-

gest that acetylcholine modulates the efficacy of intracortical

connections through changes in local neuronal excitability

(Verschure and König, 1999).

It is highly likely that ICMs are strongly influenced by the his-

tory of ongoing or task-related network dynamics. Substantial

evidence suggests that both envelope and phase ICMs are

sculptured by experience-dependent plasticity, reflecting a

history of coactivation during previous tasks (Singer, 1999; Izhi-

kevich et al., 2004; Corbetta, 2012). Indeed, ongoing activity pat-

terns resembling preceding task- or stimulus-related activation

have been reported in studies on rat hippocampus (Foster and

Wilson, 2006) and sensory cortex (Luczak et al., 2009; Xu

et al., 2012). Shaping of envelope ICMs by history of coupling

during preceding tasks has been shown in several studies

involving sensorimotor learning (Albert et al., 2009; Lewis et al.,

2009) or memory encoding (Tambini et al., 2010). Moreover, a

number of studies have demonstrated that spatial patterns in

ongoing activity can resemble functional topographies in visual

and auditory cortex, which are molded by experience-depen-

dent plasticity (Kenet et al., 2003; Fukushima et al., 2012). Phase

ICMs are also likely to be shaped through learning and

spike-timing-dependent plasticity (Singer, 1999; Uhlhaas et al.,

2010). This has been shown, for instance, in studies in amblyopic

cats in which experience-dependent network changes lead to

altered coherence of oscillations in visual cortex (Roelfsema

et al., 1994).

Taken together, the available evidence suggests that ICMs

are determined by a number of factors including structural con-

nectivity, conduction delays, level of neuromodulators, global

network states, as well as previous task-related activation or

coupling. This suggests that ICMs are not reflecting highly

invariant networks but coupling patterns that adapt through

use-dependent plasticity and are modified in a context-depen-

dent manner.

Functional Significance
A huge body of evidence is available regarding putative func-

tions of stimulus-induced or task-related coupling (Singer,

1999; Engel et al., 2001; Jensen and Colgin, 2007; Fries, 2009;

Schroeder and Lakatos, 2009; Engel and Fries, 2010). The
computational and cognitive significance of coupling in ongoing

activity is not yet resolved, but a number of putative functions

have been suggested.

An obvious possibility is that ICMs provide coordinated win-

dows of enhanced or decreased excitability for spatially sepa-

rate neuronal populations (Schroeder et al., 2008; Schroeder

and Lakatos, 2009; Fries, 2009; Deco and Corbetta, 2011).

This might then modulate local dynamics either on slow or faster

timescales, depending on whether envelope or phase ICMs

predominate. Moreover, this might regulate plasticity within

and among the populations involved in the ICM and, thus,

contribute to shaping the network structure and to consolidating

patterns of synaptic changes. In addition to regulating local

excitability and plasticity, ICMs might bias the functional con-

nectivity across neuronal populations during upcoming stimuli

or tasks (Engel et al., 2001; Fox and Raichle, 2007; Deco and

Corbetta, 2011; Corbetta, 2012). Shaped by previous learning,

ICMs might encode predictions about expected correlations

between regions that might be cooperating in the future. ICMs

might embody dispositions for expression of dynamic coupling

patterns underlying cognitive processing and, thus, act as priors

for the processing of upcoming stimuli. These priors might take

effect by constraining task-related dynamics and by facilitating

certain coupling patterns during stimulation.

A number of studies suggest that envelope ICMs can modu-

late perception and cognitive processing. It has been shown

that variability of both a behavioral response and BOLD signals

in sensorimotor cortex was influenced, on a trial-by-trial basis,

by an ICM involving left and right sensorimotor areas (Fox

et al., 2006, 2007). BOLD fluctuations across visual areas were

shown to modulate the dynamics of spontaneous perceptual

changes in a bistable perception task (Donner et al., 2013). Inter-

estingly, the perceptual changes were related to retinotopically

specific coupling modes, suggesting that envelope ICMs can

encode predictions in a spatially specific way (Figure 3A). In

studies involving continued detection of somatosensory stimuli,

the amplitude (Linkenkaer-Hansen et al., 2004) or the phase

(Monto et al., 2008) of slow envelope fluctuations was found to

modulate the subjects’ detection performance.

An important question is whether ICMs occurring during rest

are similar to coupling patterns observed during a task. ICMs

might persist as ‘‘background’’ coupling patterns during task

performance or stimulus processing. Studies in both monkeys

and humans suggest that envelope ICMs indeed may be similar

in ongoing activity and during tasks (Leopold et al., 2003; Vincent

et al., 2007; Smith et al., 2009). In the study on BOLD fluctuations

and bistable perception mentioned above (Donner et al., 2013),

the coupling patterns investigated actually represent envelope

ICMs present during the task.

While a substantial number of studies have looked at predic-

tive effects of local oscillatory activity, studies on predictive

effects of phase coupling on perception or task performance

are relatively rare. Based on studies of auditory and language

processing, delta- and theta-band ICMs have been associated

with predictive timing (‘‘predicting when’’). Beta- and gamma-

band ICMs, in contrast, may be relevant for encoding predictions

about the nature of upcoming stimuli (‘‘predicting what’’) (Arnal

and Giraud, 2012). It has been postulated that beta-band ICMs
Neuron 80, November 20, 2013 ª2013 Elsevier Inc. 873
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Figure 3. ICMs Can Bias Cognitive Processing
(A) Fluctuations of an envelope ICM shaping perceptual dynamics during motion-induced blindness. Top left: a yellow target was surrounded by a moving dot
pattern (blue), which appeared as a rotating sphere. While viewing this stimulus, participants repeatedly experienced the spontaneous disappearance and re-
appearance of the target. Top right: retinotopic subregions activated by target and mask in visual areas V1–V4. Colors represent correlation between measured
activity and stimulus alternations. Middle left: example of a raw fMRI time series for the cortical subregions activated by targets (T, orange) and by the mask (M,
blue). Black bars at the bottom indicate epochs of strong global fluctuations across all subregions, whichwere unrelated to the perceptual dynamics. Middle right:
residual time series after removing the global mean across all subregions. Green bars and arrows mark epochs of anticorrelated fluctuations in the target and
mask subregions of V4. Coupling of fluctuations in the residual BOLD signals predicted the subjects’ perceptual dynamics. Bottom left: couplingmode correlating
with the rate of target disappearance. Colors represent weights that quantify the contribution of each retinotopic subregion to the fluctuation. Bottom right:
coupling mode related to the duration of target disappearance. Modified from Donner et al. (2013).
(B) Phase ICM biases perception in the bounce-pass paradigm. Top: while EEG was recorded, participants watched a screen on which two bars approached,
briefly overlapped, and moved apart again. At the time of overlap of the bars, a brief click sound was played. Participants perceived this stimulus either as two
bouncing or passing bars, with the percept spontaneously changing across trials. Middle: around the time when the stimulus became perceptually ambiguous,
beta-band coherence (15–30 Hz) was enhanced. Bottom left: the strength of beta-band coupling predicted the subjects’ percept: stronger beta-band coherence
predicted perceiving the bars as bouncing, whereas weaker coherence predicted the percept of passing bars. Bottom right: this beta-band ICM (white lines
indicate coherence strength) occurred in a large-scale cortical network including bilateral frontal eye fields (FEFs), posterior parietal cortex (IPS), visual areas
involved in motion processing (MT+), as well as early visual cortex (V1/V2). Modified from Hipp et al. (2011).
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may specifically be involved in predicting a maintenance of the

current sensorimotor setting, while gamma-band ICMs may

encode the prediction of a change in stimulation or cognitive

set (Engel and Fries, 2010). Alpha-band ICMs have been impli-

cated in the inhibition and disconnection of task-irrelevant areas

(Jensen et al., 2012).

A number of animal studies demonstrate predictive or modu-

latory effects of phase ICMs. Spike synchronization in monkey

motor cortex was observed to reflect the animal’s expectancy

of an upcoming stimulus (Riehle et al., 1997). Similarly, beta-

band ICMs were found to occur in cat visual and parietal cortex

during expectation of a task-relevant stimulus (Roelfsema et al.,

1997). In cat visual cortex, gamma-band coupling in prestimulus

epochs was shown to predict first-spike synchrony during stim-

ulation (Fries et al., 2001). Studies of monkey visual cortex indi-

cate that fluctuations in gamma-band ICMs modulate the speed

at which animals can detect a behaviorally relevant stimulus

change (Womelsdorf et al., 2006). EEG studies in humans pro-
874 Neuron 80, November 20, 2013 ª2013 Elsevier Inc.
vide convergent evidence that prestimulus fluctuations in phase

ICMs can modulate target detection (Hanslmayr et al., 2007;

Kranczioch et al., 2007), suggesting that perception of a task-

relevant stimulus is hampered by alpha-band but facilitated by

beta- and gamma-band ICMs. Furthermore, intrinsic fluctuations

of phase ICMs are associated with fluctuations in perceptual

states in ambiguous stimulus settings. Fluctuations in a beta-

band ICM have been shown to predict the perceptual state in

an ambiguous audio-visual paradigm (Hipp et al., 2011)

(Figure 3B). Intrinsically generated fluctuations in a gamma-

band ICM seem responsible for perceptual changes in a

dynamic apparent motion stimulus (Rose and Büchel, 2005).

Both studies demonstrate the relevance of intrinsically gener-

ated fluctuations in coupling that are present during the task

and interact with the stimuli such that one perceptual interpreta-

tion is favored.

Importantly, phase ICMs also closely relate to plasticity. In

addition to being enabled by preceding learning and plasticity
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(see preceding section) phase ICMs are, in turn, important in trig-

gering synaptic changes. During development, phase ICMs are

involved in shaping the network structure (Weliky, 2000; Uhlhaas

et al., 2010). Synchronized ongoing activity is present in the ner-

vous system already early in development and has been shown

to be important, by triggering spike-timing-dependent plasticity,

for normal development of topographic maps, connection topol-

ogies, and neuronal response properties (Weliky, 2000; Feld-

man, 2012). In the adult brain, phase ICMs are known to play a

role in both working memory and long-term memory. Well-

established examples are theta-band ICMs linking the hippo-

campus to frontal regions and beta-band ICMs coupling frontal

and parietal areas during working memory (Fell and Axmacher,

2011). In sleep, slow-wave oscillations are thought to have a

role in memory consolidation, enabling transition of memories

from a labile state into a stable state that is hippocampus inde-

pendent (Diekelmann and Born, 2010). During the slow oscilla-

tions, replay of previously processed signals seems to occur

(Luczak et al., 2009), suggesting that phase ICMs can also serve

to revisit and consolidate activity patterns that have been learnt

during stimulation.

An important, but unresolved, question is how envelope and

phase ICMs might interact. Between phase ICMs in different fre-

quency bands, cross-frequency coupling seems abundant. For

instance, in auditory cortex, delta-band ICMs modulate the

amplitude of theta-band ICMs, whose phase in turn modulates

the amplitude of gamma-band ICMs (Schroeder et al., 2008).

During sleep, slow oscillations also seem to orchestrate fast

oscillations (Diekelmann and Born, 2010). It has been suggested

that cross-frequency coupling may also occur between enve-

lope and phase ICMs (Palva and Palva, 2011). Indeed, the phase

of envelope ICMs has been shown to modulate the amplitude of

faster ongoing oscillations (Monto et al., 2008). Thus, envelope

and phase ICMs might interact to organize hierarchies of dy-

namic patterns by cross-frequency coupling (Schroeder et al.,

2008). Envelope ICMs might facilitate phase ICMs by changing

effective coupling at faster frequencies through excitability mod-

ulation (Palva and Palva, 2011). Conversely, hypercoherent low-

frequency ICMs may also impair communication through phase

ICMs at higher frequencies. For instance, during anesthesia

ongoing low-frequency coupling seems to block specific pro-

cessing at faster coupling modes (Supp et al., 2011).

Taken together, the available data seem to support the

following set of hypotheses on the putative function of ICMs

(Table 1). Envelope ICMs might primarily be involved in regu-

lating the activation of particular networks that might be relevant

for an upcoming task. They seem to represent coherent excit-

ability fluctuations that lead to coordinated changes in the acti-

vation of brain areas. Phase ICMs, in contrast, seem to facilitate

communication between separate neuronal populations during

stimulus or cognitive processing (Fries, 2009; Corbetta, 2012),

which may be relevant for regulating the integration and flow of

cognitive contents. Another important function of phase ICMs

is that they enable spike-timing-dependent plasticity and are

related to encoding of memories and to the stabilization of cir-

cuitry during development. It is currently unclear whether enve-

lope ICMs might also have a function in gating plasticity on

slower timescales, possibly through neuromodulation (Pawlak
et al., 2010). At present, little experimental evidence is available

to support this, but studies in sleep suggest a role for slow

ongoing oscillations in regulating plasticity (Marshall et al., 2006).

Changes in Neuropsychiatric Disorders
A large number of neurological and psychiatric disorders involve

malfunctions in distributed brain networks mediating perceptual

and cognitive processes. Available evidence suggests that this

holds for disorders such as schizophrenia, depression, autism,

Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple

sclerosis (MS), or stroke. Therefore, it is hardly surprising that

there is a steadily growing interest in how coupling patterns

change in these and other disorders, both in task-related (Schnit-

zler and Gross, 2005; Gerloff et al., 2006; Uhlhaas and Singer,

2012) and in ongoing activity (Fox and Greicius, 2010; Gerloff

and Hallett, 2010). It has been hypothesized that the spatiotem-

poral dynamics of distributed networks may provide a key to

understanding the pathophysiology of these neuropsychiatric

disorders (Schnitzler and Gross, 2005; Uhlhaas and Singer,

2012). In this context, ICMs seem particularly relevant because

they might reflect the underlying type of network malfunction,

may constitute intermediate phenotypes linking risk gene vari-

ants to behavior and clinical symptoms (Fornito and Bullmore,

2012), and can possibly serve as markers for diagnostic and

therapeutic interventions (Bullmore and Sporns, 2009; Carter

et al., 2012). In this section, we discuss several examples of dis-

orders in which substantial research on changes in ICMs has

been carried out, namely, AD, MS, stroke, PD, and schizo-

phrenia. Comparing network dynamics across these disorders

seems highly interesting, as they represent different types of

network disturbances, such as large-scale neurodegeneration

(AD), focal (stroke) or multifocal (MS) lesions, regional neurode-

generation with loss of a modulatory transmitter system (PD),

and late developmental network modifications (schizophrenia).

A wealth of studies on AD has addressed altered functional

connectivity in ongoing activity, suggesting profound changes

in envelope ICMs in this neurodegenerative disorder (Filippi

and Agosta, 2011). Consistently, a disruption of envelope ICMs

in the default-mode network and a decrease of coupling

between default-mode network and hippocampus has been

described (Broyd et al., 2009), which has been linked to the

memory dysfunction occurring in this disorder. More recent

studies have reported decreases of envelope ICMs also for other

BOLD-defined networks (Brier et al., 2012) (Figures 4A and 4B).

Graph-theoretical analyses revealed that brains of AD patients

show a reduction of long-distance connections, increased path

length between nodes, and reduced local clustering (Supekar

et al., 2008; Sanz-Arigita et al., 2010), indicating a loss of

small-world network properties. Changes in phase ICMs have

been reported by neurophysiological studies in AD, showing

reduced long-range synchrony in the alpha and beta band (Babi-

loni et al., 2004; Koenig et al., 2005; Stam et al., 2006). These re-

ports did not address potential confounds by volume spread, but

similar results were obtained in studies using coupling analyses

avoiding this problem (Stam et al., 2007a; Dubovik et al., 2013).

Graph theoretical analysis has also been applied to EEG and

MEG data in AD, confirming the loss of network complexity re-

ported in fMRI studies (Stam et al., 2007b; de Haan et al., 2012).
Neuron 80, November 20, 2013 ª2013 Elsevier Inc. 875
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Figure 4. Alteration of Envelope ICMs in AD and MS
(A and B) In AD, BOLD functional connectivity decreases within the default mode network (DMN) and the dorsal attention network (DAN) as well as between
networks. These alterations are correlated with a change in clinical dementia rating (CDR), reflecting no (CDR 0), very mild (CDR 0.5), or mild (CDR 1) dementia. (A)
Seed-based connectivity maps for DMN and DAN at CDR 0 and CDR 1. For DMN, the posterior cingulate cortex and, for DAN, MT+ were chosen as seed region,
respectively. Red, positive correlation; blue, anticorrelation. (B) Within network correlation and between network anticorrelation as a function of CDR. Note that
both are reduced with increasing disease severity. (A) and (B) are modified from Brier et al. (2012).
(C and D) Alteration of BOLD-derived coupling inMS patients with early MS. (C) Dominant spatial pattern of connectivity modulations explaining about 40% of the
overall connectivity modulation variance. This pattern comprised areas of the default mode network (DMN) and areas implicated in the deployment of attention
and cognitive control (control network [CN]). (D) In both DMN and CN, connectivity was increased in patients compared to controls. Patients showed slightly
stronger anticorrelation between the two networks. Note that the increase of within network coupling was associated with a decrease in cognitive efficiency that
was observed using a neuropsychological test battery. Abbreviations: DLPF, dorsolateral prefrontal cortex; TMP, temporal cortex; IPL, inferior parietal lobule;
IPS, intraparietal sulcus; LP, lateral parietal cortex; MT+, middle temporal region; PCC, posterior cingulate cortex; MPF, medial prefrontal cortex. (C) and (D) are
modified from Hawellek et al. (2011). Copyright National Academy of Sciences, USA.
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Studies on ICMs in MS patients are currently relatively scarce,

presumably due to the heterogeneity in symptoms and individual

course of the disease. A number of recent fMRI studies have

demonstrated changes of envelope ICMs in networks related

to cognitive and sensorimotor functions (Filippi et al., 2013).

Patients at the earliest stage of MS show increased BOLD

connectivity in the default-mode network and other networks

(Roosendaal et al., 2010; Hawellek et al., 2011; Faivre et al.,

2012). The increase in envelope ICMs can occur despite signifi-

cant cognitive decline and beginning structural disintegration of

cortical networks (Hawellek et al., 2011) (Figures 4C and 4D).

This suggests that, at an early stage of the disease, increased

envelope ICMs might reflect a compensatory effort of brain net-

works to maintain appropriate function. However, at later stages

of MS, functional disconnection seems to prevail, correlating

closely with cognitive decline (Rocca et al., 2012). Hitherto,

only very few studies are available on changes of fast neural

dynamics in MS and, thus, almost nothing is known about alter-

ations of phase ICMs in this disorder. By affecting conduction

delays, demyelination and axonal damage are likely to cause
876 Neuron 80, November 20, 2013 ª2013 Elsevier Inc.
changes in local carrier oscillations as well as functional discon-

nection of brain regions even before massive structural lesions

occur. In agreement with this hypothesis, altered functional inter-

action across distant brain regions has been observed in MEG

studies (Cover et al., 2006; Schoonheim et al., 2013; Hardmeier

et al., 2012). While showing decreases of phase ICMs in the

alpha and beta band, these studies also provide evidence for

partially increased connectivity in parietal hubs (Hardmeier

et al., 2012). Clearly, more studies are required to provide a

comprehensive picture of phase ICM changes in MS and their

sensitivity to disease progression.

Research on ICMs is also becoming increasingly important in

stroke because even in case of focal damage communication is

altered with regions outside the lesion focus (Gerloff and Hallett,

2010; Carter et al., 2012). Therefore, behavioral deficits do not

reflect local network lesions alone but imbalance and distur-

bance of communication in a large-scale network. Furthermore,

recovery after stroke will, in most cases, imply compensatory

shifts in cross-regional interactions (Gerloff et al., 2006; van

Meer et al., 2010; Carter et al., 2012). Envelope ICMs involving
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Figure 5. Alteration of Phase ICMs in Parkinson’s Disease
(A) Top: example LFP recording from the STN in a PD patient. The top trace shows an epoch of data in the state after overnight withdrawal of medication (OFF) and
the bottom trace a recording from the same patient after levodopa administration (ON). Note the slow oscillatory pattern in the OFF, which is replaced by much
faster gamma-band oscillations in the ON state. Bottom: spike activity recorded from the internal segment of the globus pallidus (GPi) in a monkey rendered
parkinsonian by application of MPTP, a neurotoxin that induces degeneration of dopaminergic neurons. The spikes are grouped in bursts that appear at beta-
band frequency. Top traces are modified from Brown and Williams (2005); bottom panel is adapted from Stein and Bar-Gad (2013).
(B) Coherence of oscillatory signals between cortex and basal ganglia in a PD patient off medication (OFF, red trace) and after reinstitution of levodopa (ON, blue
trace). In theOFF, coupling is dominated by tremor-related frequencies below 10Hz and by a beta-band ICM. In theON state, strong coupling in the gamma-band
appears. Modified from Brown (2003).
(C) Schematic summary of the interactions between cortex and basal ganglia observed in PD patients.
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somatomotor, executive, and attention networks are well inves-

tigated in stroke and during recovery and have been shown to be

predictive for both behavioral deficits and adaptive reorganiza-

tion after stroke (Carter et al., 2010; Wang et al., 2010). This

holds, in particular, for interhemispheric coupling in these net-

works (Carter et al., 2012). In contrast, evidence regarding

changes in phase ICMs is limited to a few recent studies.

Alpha-band ICMs have been observed to be decreased in perile-

sional and increased in contralesional regions, and this inter-

hemispheric difference has been found to predict cognitive

and motor performance as well as aspects of poststroke recov-

ery (Westlake et al., 2012; Dubovik et al., 2012). Moreover,

ongoing beta-band interhemispheric coupling was found to

change under the influence of rehabilitation training (Pellegrino

et al., 2012).

In PD, numerous studies have addressed changes in ICMs.

Substantial evidence has accumulated demonstrating that

phase ICMs are altered in specific ways in PD and that they

correlate with clinical symptoms and behavior. Many of the

studies in PD patients involve recordings from basal ganglia

structures during stereotactic surgery for deep brain stimulation.

These provide clear evidence for abnormal beta-band ICMs in

corticobasal ganglia loops (Figure 5A), which correlate with

severity of bradykinesia and rigidity, the key clinical symptoms

in PD (Brown, 2003; Stein and Bar-Gad, 2013). Accordingly, their

suppression by dopaminergic medication or deep brain stimula-

tion ameliorates the patient’s condition. These findings have also

been confirmed by MEG studies of phase ICMs in PD (Stoffers

et al., 2008; Litvak et al., 2011). Interestingly, dopaminergic ther-

apy and reduction of motor impairment are associated with the

emergence of a gamma-band ICM between cortex and basal

ganglia (Brown, 2003; Jenkinson et al., 2013) (Figure 5B). Overall,

these studies have led to the notion of movement-permissive

(gamma-band) versus movement-prohibitive (beta-band) ICMs

(Brown, 2003) (Figure 5C). More generally, it has been suggested

that these ICMs permit or prohibit a change in the sensorimotor

or cognitive set (Engel and Fries, 2010). Studies on envelope
ICMs using fMRI have observed increased coupling between

cortex and basal ganglia in PD that is attenuated by dopamine

(Kwak et al., 2010; Baudrexel et al., 2011). Whether this might

relate to power envelope correlations of the abundant beta-

band activity has apparently not yet been tested.

In schizophrenia, functional disconnection in brain networks

has been considered an important pathophysiological mecha-

nism already early on (Friston and Frith, 1995). Impaired func-

tional coupling has been implicated in the generation of cognitive

deficits that are typically found in the domains of working mem-

ory and attention and perceptual organization (Uhlhaas and

Singer, 2012; Fornito et al., 2012). Envelope ICMs have been ad-

dressed in numerous fMRI studies, often using graph-theoretical

approaches (Lynall et al., 2010; Alexander-Bloch et al., 2010).

These studies suggest that there is a reduction in functional con-

nectivity that particularly concerns interactions between frontal

and posterior regions (Fornito et al., 2012). Graph-theoretical

analyses reveal decreased local clustering and decreased

modularity, indicating less effective local communication (Alex-

ander-Bloch et al., 2010; Fornito et al., 2012). However, there

are also indications of reorganization at a global level toward

higher efficiency (decreased path length) and increased robust-

ness (resistance to fragmentation after removal of nodes) (Alex-

ander-Bloch et al., 2010). Phase coupling has often been studied

in task-related activity patterns (Uhlhaas and Singer, 2012;

Gandal et al., 2012) but less extensively in ongoing activity. Avail-

able studies on phase ICMs seem to support the hypothesis of

regionally decreased functional connectivity in the alpha (Hinkley

et al., 2011) and gamma band (Kikuchi et al., 2011). Overall, a

complex pattern of developmentally reorganized coupling is pre-

sent where connectivity is not generally reduced but may also

involve abnormal increases and, in this sense, schizophrenia

may represent a dysconnection, rather than a disconnection,

syndrome (Uhlhaas, 2013).

Taken together, the studies reviewed above suggest that alter-

ations in envelope or phase ICMs correlate with behavioral or

cognitive alterations in the respective disorder. The changes in
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ICMs seem to differ considerably across disorders, suggesting

progressive disconnection in AD and MS, dysconnectivity in

schizophrenia, the predominance of an abnormal phase ICM in

PD, and altered functional balance across different subnetworks

in stroke. The studies clearly demonstrate that investigation of

ICMs can add significantly to our understanding of specific

network pathologies and that they can broaden our view on

the physiological relevance of network stability, for example,

by assessing parameters like robustness as available from graph

theoretical analyses (Bullmore and Sporns, 2009, 2012). In

several disorders, clear and testable hypotheses on causal rela-

tions between changes in ICMs and clinical phenotype have

been formulated. A highly relevant insight is that changes in func-

tional connectivity observed in several of these disorders cannot

be predicted in a straightforward manner from structural alter-

ations.

While numerous studies have addressed BOLD envelope

ICMs in neuropsychiatric disorders, almost no neurophysiolog-

ical studies on envelope ICMs and relatively few studies on

phase ICMs are available. Partly, this is due to the inherent

methodological difficulties of quantifying ICMs with noninvasive

neurophysiological methods. Therefore, at present, no firm

conclusions seem to be possible on the degree to which enve-

lope ICMs or phase ICMs may differentiate between different

disorders. At a very general level, it may be hypothesized that

disorders with a high degree of structural alterationmay be asso-

ciated with strong changes in both envelope and phase ICMs

(e.g., AD), whereas disorders with less prominent connectomic

changes (e.g., PD) may primarily show altered phase ICMs

(Table 1). The current data point to a preferential pathophysiolog-

ical involvement of certain ICMs, whichmay be altered in specific

subnetworks in the respective disorders. However, more neuro-

physiological investigations of envelope ICMs and phase ICMs

are required, which ideally should be combined with source

space analyses (Hipp et al., 2012; Brookes et al., 2012; Marzetti

et al., 2013). This might allow the identification of ICMs that

reflect network pathologies with high specificity and sufficient

sensitivity to monitor longitudinal change during disease pro-

gression or recovery.

Modeling ICMs
Computational modeling has taken up the challenge of investi-

gating the mechanisms underlying ICMs. One central motivation

of such simulations has been to explore the dynamic implications

of structural brain connectivity (Bullmore and Sporns, 2012). In

addition to incorporating information about anatomical connec-

tions (Hagmann et al., 2008), these models also include a gener-

alized description of the dynamics of regional neural populations

(Figure 6A). Typically, the models assume largely uniform fea-

tures for the dynamics of the nodes or the interconnections

(Deco and Corbetta, 2011; Deco et al., 2011). The results of

several such modeling approaches (Zhou et al., 2006; Honey

et al., 2007; Deco et al., 2009; Haimovici et al., 2013) converge

on a number of central findings. In particular, the models repro-

duce empirically observed correspondences between structural

connectivity and envelope ICMs (Honey et al., 2009). As a result,

envelope ICMs found in the models typically reflect topological

features of the underlying connectome, such as modules and
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hubs (Honey et al., 2007). Models further suggest that structural

modularity can endow ICMswith dynamics on different temporal

scales (Figure 6B). Intramodular links may provide a substrate

for fast interactions, while intermodular connections allow the

integration of nodes across modalities at longer timescales

(Pan and Sinha, 2009). It is currently unclear to what extent this

difference between topological scales may contribute to the

physiological distinction between envelope and phase ICMs.

Interestingly, similar results were found in models differing

strongly in their local node dynamics (Figure 6A), which may be

represented by chaotic oscillators (Honey et al., 2007), phase

oscillators (Cabral et al., 2011), neural mass models (Deco

et al., 2009), or simple discrete excitable nodes (Haimovici

et al., 2013). The essential aspect of these different models is

that they are able to explore statistical regularities in network

organization, particularly their modularity, through multistable

dynamics. The multistability of the global dynamics appears

more important than specific model details and can be achieved

in various ways. For instance, dynamic nodemodels can be cho-

sen to be intrinsically unstable (Honey et al., 2007) or to become

unstable once individual nodes are linked to each other (Deco

et al., 2009). The multistability may then be controlled through

parameters describing physical network interactions, such as

coupling strength, delays, or noise. Noise, in particular, may

provide the means for transitions between different multistable

cluster synchronization states (Ghosh et al., 2008), shaping the

occurrence of ICMs.

The organization of ICMs has been linked to the concept of

criticality (Plenz, 2013). Criticality is associated with the phase

transition between ordered and chaotic dynamics and charac-

terized by long-range correlations and power-law distributions,

for instance, of the amplitude of activity fluctuations. As shown

by human and animal studies, the dynamics of envelope ICMs

exhibits these characteristic features (Linkenkaer-Hansen

et al., 2001; He et al., 2010; Palva and Palva, 2011; Tagliazucchi

et al., 2012b). Intuitively, criticality represents a useful opera-

ting point between disorder, which provides flexibility but lacks

structure, and order, with the opposite features. In this way, crit-

ical dynamics may support the multistable exploration of topo-

logical features of brain connectivity and enhance information

processing capabilities of neuronal networks (Bertschinger and

Natschläger, 2004). Indeed, in the critical state, the dynamic

range of an excitable network is maximized (Kinouchi and

Copelli, 2006) and brain networks optimize their response to

inputs as well as their information processing ability (Shew and

Plenz, 2013). Computational modeling indicates that envelope

ICMs arise in the neural dynamics right at the critical phase tran-

sition (Haimovici et al., 2013) or just below it (Deco and Jirsa,

2012), implying an optimal exploration of the structural connec-

tivity by neural dynamics. Conversely, the typical hierarchical

modular organization of brain connectivity appears to facilitate

critical dynamics (Kaiser and Hilgetag, 2010;Wang et al., 2011a).

Modeling also suggests that, in the case of envelope ICMs, the

structural constraints may allow only a small number of dynamic

attractors (Deco and Jirsa, 2012). However, the repertoire of

envelope ICMs is substantially expanded by phase ICMs that

arise at shorter timescales (Figure 6B) (Honey et al., 2007).

That is, different frequency-specific networks defined by ICMs
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might form and coexist within the constraints imposed by slower

network dynamics. Modeling has also shown that phase ICMs

based on synchronization facilitate efficient information trans-

mission (Buehlmann and Deco, 2010). The modeling of phase

ICMs has just begun (David and Friston, 2003; Battaglia et al.,

2012), and a systematic theoretical analysis of these spectral

coupling modes and their interaction with envelope ICMs still

presents a challenge.

Another challenge for modeling is to describe the impact of

network history on ICMs. Pilot models have demonstrated that

mechanisms such as spike-timing-dependent plasticity may

contribute to shaping ICMs. For example, in a model of spiking

neurons, Izhikevich et al. (2004) found that the interplay between
spike-timing-dependent plasticity and conduction delays led to

the formation of modules of strongly connected neurons capable

of producing time-locked spikes. Alternatively, modular connec-

tivity could be produced from a combination of synchronization-

dependent plasticity and growth-dependent plasticity in a neural

mass model (Stam et al., 2010). More detailed models will be

required to show precisely how previous functional synchroniza-

tion becomes encoded in patterns of structural connectivity and

corresponding ICMs.

A key goal for future modeling approaches will also be to

explain the alterations of ICMs in neuropsychiatric disorders.

As discussed in the preceding section, even focal stroke typically

has a spatially widespread impact on network dynamics and
Neuron 80, November 20, 2013 ª2013 Elsevier Inc. 879
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ICMs. This can be modeled by considering the effect of focal

lesions of nodes and their connections on envelope ICMs (Alstott

et al., 2009). A recent study investigating the impact of moderate,

but spatially unspecific, disconnection has demonstrated a

decrease in small-world properties and global integration remi-

niscent of the changes observed in schizophrenia (Cabral

et al., 2012). Computational approaches may also become rele-

vant for understanding alterations of ICMs in other network dis-

eases, such as MS. Several computational models suggest that

a shift of conduction delays away from the normal set point may

lead to suboptimal exploration of the dynamical attractor land-

scape (Ghosh et al., 2008).

Toward a Unifying Framework
The studies reviewed in the preceding sections comply with the

notion that the brain’s dynamics are to a large extent determined

by its intrinsic communication but much less by interactions with

its environment. They demonstrate that intrinsic coupling modes

are present in ongoing activity that reflects the sedimented

results of previous learning, encodes relevant priors for future

processing, and predicts perception and behavior both in the

healthy organism and in disorders that affect brain networks.

The available data support a differentiation between two types

of ICMs (Table 1) that seem to reflect the operation of distinct

coupling mechanisms and have therefore been termed ‘‘enve-

lope ICMs’’ and ‘‘phase ICMs.’’ While the latter arise from phase

coupling of band-limited oscillatory signals, the former are best

described as coupled aperiodic fluctuations of signal envelopes.

Both types may be observed at varying spatial scales, ranging

from local (within regions) to large-scale (cross-regional)
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coupling. However, they seem to differ

in their typical timescales, their relation

to structural connectivity, and their

state dependence. Envelope ICMs are

observed on slow timescales of several

seconds to minutes, are strongly (albeit

not completely) reflecting connectomic

structure, and appear relatively robust
against state changes. Phase ICMs, in contrast, are observed

in multiple defined frequency bands between about 1 Hz and

150 Hz, are less constrained by structural coupling, and show

strong state dependence. At present, the mutual relations of

these two types of ICMs are not yet resolved. On the one

hand, it seems likely that envelope ICMs constrain phase ICMs

both spatially and temporally. On the other hand, it might be

that envelope ICMs emerge, at least in part, from the super-

position of multiple phase ICMs.

As we have discussed above, these two types of ICMs may

have different but related functions. Envelope ICMs seem to

represent coherent excitability fluctuations that lead to coordi-

nated changes in the activation of brain areas. We therefore

hypothesize that they might regulate the availability of neuronal

populations or regions for participation in an upcoming task.

Phase ICMs, in contrast, may facilitate communication between

separate neuronal populations during stimulus or cognitive pro-

cessing, which may serve to regulate the integration and flow of

cognitive contents on fast timescales. Another important func-

tion of ICMs is that they enable the consolidation of memories

and the stabilization of neuronal circuits in development. While

gating of spike-timing-dependent plasticity is well established

for phase ICMs, the relation of envelope ICMs to plasticity is,

at this point, largely hypothetical.

The interaction between both types of ICMsmight then enable

the following scenario (Figure 7). While envelope ICMs facilitate

the participation of certain brain areas in an upcoming task,

phase ICMs might prime the activation of particular dynamic

links within the respective network. Establishment of such dy-

namic links just prior to expected events might prime particular
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stimulus constellations or movement programs, thus increasing

appropriateness and efficiency of the organism’s response.

Effectively, this interaction between envelope and phase ICMs

might establish and coordinate functional hierarchies of dynamic

coupling patterns across different spatial and temporal scales.

An interesting implication of such a scenario might be that,

through the nesting of multiple timescales, global dynamics

might influence or bias local dynamics. Evidently, further studies

will be needed to investigate the functional interaction between

both types of ICMs.

Further research will also be needed to address the relation

between ICMs and task-related coupling modes. In natural set-

tings, the operations of the brain will rarely be completely stim-

ulus and task free, except during sleep, anesthesia, or coma.

Thus, it may be assumed that ICMs will dominate the dynamics

in regions that do not participate in the current task, while they

interact or compete with externally triggered coupling modes

in other networks involved in the ‘‘foreground’’ process. In the

latter, ICMs might interact with task-related coupling modes,

resulting in a matching of predictions with incoming signals

and a computation of error signals. In the former, in contrast,

ICMs might serve to replay and consolidate the results of previ-

ous processing and to shield neural populations from getting

involved in the task-related coupling modes, thus preventing

previous contents from being overwritten. Therefore, it would

be interesting to investigate ICMs in subnetworks not engaged

in a task, in the presence of task-related coupling modes in other

brain networks.

To further corroborate the functional relevance of ICMs, it

will be highly relevant to manipulate envelope ICMs or phase

ICMs in a specificmanner and to test the effects on task- or stim-

ulus-related processing. A number of different approaches may

be viable to shape ICMs. One possibility is to modulate ICMs by

neuropharmacological intervention, which has been demon-

strated for BOLD coupling (Wang et al., 2011b; Cole et al.,

2013; Pa et al., 2013) but not yet been applied to modulating

phase ICMs in humans. Moreover, training through neurofeed-

back can be employed to shape ICMs. Several studies have

demonstrated effects of neurofeedback on BOLD-defined enve-

lope ICMs (Koush et al., 2013; Haller et al., 2013). A recent MEG

study has explored the possibility to shape movement-related

cross-hemispheric phase coupling by neurofeedback (Sacchet

et al., 2012), suggesting that this might also be possible for

ongoing activity.

A third line of approaches is provided by noninvasive neurosti-

mulation techniques, such as transcranial magnetic stimulation

(TMS), transcranial direct current stimulation (tDCS), or transcra-

nial alternating current stimulation (tACS), which all have been

used to modulate ongoing activity in recent studies (Paulus,

2011; Thut et al., 2012; Grefkes and Fink, 2012; Schulz et al.,

2013; Herrmann et al., 2013). Attempts to entrain envelope

ICMs have beenmade using slowly varying tDCS, demonstrating

effects on plasticity during sleep (Marshall et al., 2006) and on

neuronal excitability during wakefulness (Groppa et al., 2010).

Modulation of phase ICMs has been achieved by multifocal

TMS in a study demonstrating enhanced alpha- and beta-band

coherence following synchronous TMS stimulation over visual

and motor cortex (Plewnia et al., 2008). For modulation of phase
ICMs, tACS seems particularly promising because it opens

up the possibility of entraining ongoing activity in a frequency-

specific way (Herrmann et al., 2013). This is suggested by a

recent study that has demonstrated an influence of entraining

gamma-band ICMs on bistable visual perception (Strüber

et al., 2013). A limitation is that effects on phase ICMs have so

far only been shown by comparing epochs preceding and

following tACS but not yet by directly testing changes in coupling

during the stimulation. An interesting possibility is that tACS

might also be used to mimic the physiological dynamics of enve-

lope ICMs by entraining with amplitude-modulated oscillatory

waveforms. Possible interactions of envelope and phase ICMs

might then be tested by varying the coherence of the oscillations

independently of the spatial envelope correlation.

Important issues for future studies also arise regarding the

clinical implications of ICMs. As discussed above, studies of

functional connectivity in neuropsychiatric disorders have most

often used BOLD-derived measurements. The novel neurophys-

iological approaches that have become available (Hipp et al.,

2012; Brookes et al., 2012; Hillebrand et al., 2012; Marzetti

et al., 2013) show promise to yield amuch richer characterization

of ICMs. These approaches may help to advance the compari-

son of ICMs across disorders, to further test their validity as inter-

mediate phenotypes, and to better understand their changes in

relation to the progression of the diseases. Furthermore, these

approaches may lead to the development of novel network-

based markers for monitoring clinical outcomes and for evalu-

ating therapeutic interventions. One of the challengeswill consist

in extracting robust network markers from sensor-level signals

that, in clinical routine, are typically recorded with low electrode

numbers. Future research on ICMs is also likely to increase the

possibility for therapeutic interventions that target the modula-

tion of functional connectivity, rather than local function, by

multisite neurostimulation (Grefkes and Fink, 2012; Schulz

et al., 2013). Increasing insight in the pathophysiological

relevance of phase ICMs is likely to motivate the usage of

frequency-specific entrainment approaches in clinical context.

An example is provided by a recent study that has employed

tACS at tremor frequencies to suppress the tremor in PD patients

(Brittain et al., 2013).

In conclusion, we have discussed ICMs as a key feature of

brain dynamics and we have considered their physiological

manifestations, putative mechanisms, potential functional roles,

as well as their alterations in neuropsychiatric disorders. We pro-

pose that the concept of ICMsmay provide a unifying framework

for capturing the dynamics of ongoing activity at multiple spatial

and temporal scales. We have considered envelope ICMs and

phase ICMs as two different but interacting coupling modes.

Now it is time for studies explicitly addressing both types of

ICMs in the same data set and testing possible interactions

between these coupling modes. To this end, targeted manipula-

tion of ICMs (e.g., via pharmacology or brain stimulation)

holds great potential. Moreover, studies in patients could be

very revealing, but they need to start comparing both envelope

and phase coupling directly. We believe that the investigation

of ICMs will rapidly gain in importance, both for advancing the

treatment of network disorders and our understanding of the

key role of intrinsic coupling modes in cognition.
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Bertschinger, N., and Natschläger, T. (2004). Real-time computation at the
edge of chaos in recurrent neural networks. Neural Comput. 16, 1413–1436.

Biswal, B., Yetkin, F.Z., Haughton, V.M., and Hyde, J.S. (1995). Functional
connectivity in the motor cortex of resting human brain using echo-planar
MRI. Magn. Reson. Med. 34, 537–541.

Brier, M.R., Thomas, J.B., Snyder, A.Z., Benzinger, T.L., Zhang, D., Raichle,
M.E., Holtzman, D.M., Morris, J.C., and Ances, B.M. (2012). Loss of intranet-
work and internetwork resting state functional connections with Alzheimer’s
disease progression. J. Neurosci. 32, 8890–8899.

Brittain, J.S., Probert-Smith, P., Aziz, T.Z., and Brown, P. (2013). Tremor
suppression by rhythmic transcranial current stimulation. Curr. Biol. 23,
436–440.

Brookes, M.J., Woolrich, M., Luckhoo, H., Price, D., Hale, J.R., Stephenson,
M.C., Barnes, G.R., Smith, S.M., and Morris, P.G. (2011). Investigating the
electrophysiological basis of resting state networks using magnetoencepha-
lography. Proc. Natl. Acad. Sci. USA 108, 16783–16788.

Brookes, M.J., Woolrich, M.W., and Barnes, G.R. (2012). Measuring functional
connectivity in MEG: a multivariate approach insensitive to linear source
leakage. Neuroimage 63, 910–920.

Brown, P. (2003). Oscillatory nature of human basal ganglia activity: relation-
ship to the pathophysiology of Parkinson’s disease. Mov. Disord. 18, 357–363.

Brown, P., and Williams, D. (2005). Basal ganglia local field potential activity:
character and functional significance in the human. Clin. Neurophysiol. 116,
2510–2519.
882 Neuron 80, November 20, 2013 ª2013 Elsevier Inc.
Broyd, S.J., Demanuele, C., Debener, S., Helps, S.K., James, C.J., and
Sonuga-Barke, E.J. (2009). Default-mode brain dysfunction in mental disor-
ders: a systematic review. Neurosci. Biobehav. Rev. 33, 279–296.

Buckner, R.L., Krienen, F.M., and Yeo, B.T.T. (2013). Opportunities and limita-
tions of intrinsic functional connectivity MRI. Nat. Neurosci. 16, 832–837.

Buehlmann, A., and Deco, G. (2010). Optimal information transfer in the cortex
through synchronization. PLoS Comput. Biol. 6, e1000934.

Bullmore, E., and Sporns, O. (2009). Complex brain networks: graph theoret-
ical analysis of structural and functional systems. Nat. Rev. Neurosci. 10,
186–198.

Bullmore, E., and Sporns, O. (2012). The economy of brain network organiza-
tion. Nat. Rev. Neurosci. 13, 336–349.

Cabral, J., Hugues, E., Sporns, O., and Deco, G. (2011). Role of local network
oscillations in resting-state functional connectivity. Neuroimage 57, 130–139.

Cabral, J., Hugues, E., Kringelbach, M.L., and Deco, G. (2012). Modeling the
outcome of structural disconnection on resting-state functional connectivity.
Neuroimage 62, 1342–1353.

Carter, A.R., Astafiev, S.V., Lang, C.E., Connor, L.T., Rengachary, J., Strube,
M.J., Pope, D.L., Shulman, G.L., and Corbetta, M. (2010). Resting interhemi-
spheric functional magnetic resonance imaging connectivity predicts perfor-
mance after stroke. Ann. Neurol. 67, 365–375.

Carter, A.R., Shulman, G.L., and Corbetta, M. (2012). Why use a connectivity-
based approach to study stroke and recovery of function? Neuroimage 62,
2271–2280.

Cole, D.M., Smith, S.M., and Beckmann, C.F. (2010). Advances and pitfalls
in the analysis and interpretation of resting-state FMRI data. Front. Syst.
Neurosci. 4, 8.

Cole, D.M., Beckmann, C.F., Oei, N.Y., Both, S., van Gerven, J.M., and
Rombouts, S.A. (2013). Differential and distributed effects of dopamine neuro-
modulations on resting-state network connectivity. Neuroimage 78, 59–67.

Contreras, D., and Steriade, M. (1997). Synchronization of low-frequency
rhythms in corticothalamic networks. Neuroscience 76, 11–24.

Corbetta, M. (2012). Functional connectivity and neurological recovery. Dev.
Psychobiol. 54, 239–253.

Cover, K.S., Vrenken, H., Geurts, J.J., van Oosten, B.W., Jelles, B., Polman,
C.H., Stam, C.J., and van Dijk, B.W. (2006). Multiple sclerosis patients show
a highly significant decrease in alpha band interhemispheric synchronization
measured using MEG. Neuroimage 29, 783–788.

Damoiseaux, J.S., and Greicius, M.D. (2009). Greater than the sum of its parts:
a review of studies combining structural connectivity and resting-state func-
tional connectivity. Brain Struct. Funct. 213, 525–533.

David, O., and Friston, K.J. (2003). A neural mass model for MEG/EEG:
coupling and neuronal dynamics. Neuroimage 20, 1743–1755.

de Haan, W., van der Flier, W.M., Wang, H., Van Mieghem, P.F., Scheltens, P.,
and Stam, C.J. (2012). Disruption of functional brain networks in Alzheimer’s
disease: what can we learn from graph spectral analysis of resting-state mag-
netoencephalography? Brain Connect. 2, 45–55.

de Pasquale, F., Della Penna, S., Snyder, A.Z., Lewis, C., Mantini, D., Marzetti,
L., Belardinelli, P., Ciancetta, L., Pizzella, V., Romani, G.L., and Corbetta, M.
(2010). Temporal dynamics of spontaneous MEG activity in brain networks.
Proc. Natl. Acad. Sci. USA 107, 6040–6045.

de Pasquale, F., Della Penna, S., Snyder, A.Z., Marzetti, L., Pizzella, V.,
Romani, G.L., and Corbetta, M. (2012). A cortical core for dynamic integration
of functional networks in the resting human brain. Neuron 74, 753–764.

Deco, G., and Corbetta, M. (2011). The dynamical balance of the brain at rest.
Neuroscientist 17, 107–123.

Deco, G., and Jirsa, V.K. (2012). Ongoing cortical activity at rest: criticality,
multistability, and ghost attractors. J. Neurosci. 32, 3366–3375.

Deco, G., and Thiele, A. (2009). Attention: oscillations and neuropharma-
cology. Eur. J. Neurosci. 30, 347–354.



Neuron

Review
Deco, G., Jirsa, V., McIntosh, A.R., Sporns, O., and Kötter, R. (2009). Key role
of coupling, delay, and noise in resting brain fluctuations. Proc. Natl. Acad. Sci.
USA 106, 10302–10307.

Deco, G., Jirsa, V.K., and McIntosh, A.R. (2011). Emerging concepts for
the dynamical organization of resting-state activity in the brain. Nat. Rev.
Neurosci. 12, 43–56.

Destexhe, A., Contreras, D., and Steriade, M. (1999). Spatiotemporal analysis
of local field potentials and unit discharges in cat cerebral cortex during natural
wake and sleep states. J. Neurosci. 19, 4595–4608.

Diekelmann, S., and Born, J. (2010). The memory function of sleep. Nat. Rev.
Neurosci. 11, 114–126.

Donner, T.H., Sagi, D., Bonneh, Y.S., and Heeger, D.J. (2013). Retinotopic
patterns of correlated fluctuations in visual cortex reflect the dynamics of
spontaneous perceptual suppression. J. Neurosci. 33, 2188–2198.

Dubovik, S., Pignat, J.M., Ptak, R., Aboulafia, T., Allet, L., Gillabert, N., Magnin,
C., Albert, F., Momjian-Mayor, I., Nahum, L., et al. (2012). The behavioral
significance of coherent resting-state oscillations after stroke. Neuroimage
61, 249–257.

Dubovik, S., Bouzerda-Wahlen, A., Nahum, L., Gold, G., Schnider, A., and
Guggisberg, A.G. (2013). Adaptive reorganization of cortical networks in
Alzheimer’s disease. Clin. Neurophysiol. 124, 35–43.

Engel, A.K., and Fries, P. (2010). Beta-band oscillations—signalling the status
quo? Curr. Opin. Neurobiol. 20, 156–165.

Engel, A.K., König, P., Kreiter, A.K., and Singer, W. (1991). Interhemispheric
synchronization of oscillatory neuronal responses in cat visual cortex. Science
252, 1177–1179.

Engel, A.K., Fries, P., and Singer, W. (2001). Dynamic predictions: oscillations
and synchrony in top-down processing. Nat. Rev. Neurosci. 2, 704–716.

Faivre, A., Rico, A., Zaaraoui, W., Crespy, L., Reuter, F., Wybrecht, D., Soulier,
E., Malikova, I., Confort-Gouny, S., Cozzone, P.J., et al. (2012). Assessing
brain connectivity at rest is clinically relevant in early multiple sclerosis. Mult.
Scler. 18, 1251–1258.

Feldman, D.E. (2012). The spike-timing dependence of plasticity. Neuron 75,
556–571.

Fell, J., and Axmacher, N. (2011). The role of phase synchronization in memory
processes. Nat. Rev. Neurosci. 12, 105–118.

Filippi, M., and Agosta, F. (2011). Structural and functional network connec-
tivity breakdown in Alzheimer’s disease studied with magnetic resonance
imaging techniques. J. Alzheimers Dis. 24, 455–474.

Filippi, M., Agosta, F., Spinelli, E.G., and Rocca, M.A. (2013). Imaging resting
state brain function in multiple sclerosis. J. Neurol. 260, 1709–1713.

Fornito, A., and Bullmore, E.T. (2012). Connectomic intermediate phenotypes
for psychiatric disorders. Front. Psychiatry 3, 32.

Fornito, A., Zalesky, A., Pantelis, C., and Bullmore, E.T. (2012). Schizophrenia,
neuroimaging and connectomics. Neuroimage 62, 2296–2314.

Foster, D.J., and Wilson, M.A. (2006). Reverse replay of behavioural
sequences in hippocampal place cells during the awake state. Nature 440,
680–683.

Fox, M.D., and Greicius, M. (2010). Clinical applications of resting state
functional connectivity. Front. Syst. Neurosci. 4, 19.

Fox, M.D., and Raichle, M.E. (2007). Spontaneous fluctuations in brain activity
observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8,
700–711.

Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., and
Raichle, M.E. (2005). The human brain is intrinsically organized into dynamic,
anticorrelated functional networks. Proc. Natl. Acad. Sci. USA 102, 9673–
9678.

Fox, M.D., Snyder, A.Z., Zacks, J.M., and Raichle, M.E. (2006). Coherent
spontaneous activity accounts for trial-to-trial variability in human evoked
brain responses. Nat. Neurosci. 9, 23–25.
Fox, M.D., Snyder, A.Z., Vincent, J.L., and Raichle, M.E. (2007). Intrinsic
fluctuations within cortical systems account for intertrial variability in human
behavior. Neuron 56, 171–184.

Fries, P. (2009). Neuronal gamma-band synchronization as a fundamental
process in cortical computation. Annu. Rev. Neurosci. 32, 209–224.

Fries, P., Neuenschwander, S., Engel, A.K., Goebel, R., and Singer, W. (2001).
Rapid feature selective neuronal synchronization through correlated latency
shifting. Nat. Neurosci. 4, 194–200.

Friston, K. (2005). A theory of cortical responses. Philos. Trans. R. Soc. Lond. B
Biol. Sci. 360, 815–836.

Friston, K.J., and Frith, C.D. (1995). Schizophrenia: a disconnection syn-
drome? Clin. Neurosci. 3, 89–97.

Fukushima, M., Saunders, R.C., Leopold, D.A., Mishkin, M., and Averbeck,
B.B. (2012). Spontaneous high-gamma band activity reflects functional
organization of auditory cortex in the awake macaque. Neuron 74, 899–910.

Gandal, M.J., Edgar, J.C., Klook, K., and Siegel, S.J. (2012). Gamma
synchrony: towards a translational biomarker for the treatment-resistant
symptoms of schizophrenia. Neuropharmacology 62, 1504–1518.

Gerloff, C., and Hallett, M. (2010). Big news from small world networks after
stroke. Brain 133, 952–955.

Gerloff, C., Bushara, K., Sailer, A., Wassermann, E.M., Chen, R., Matsuoka, T.,
Waldvogel, D., Wittenberg, G.F., Ishii, K., Cohen, L.G., and Hallett, M. (2006).
Multimodal imaging of brain reorganization in motor areas of the contrale-
sional hemisphere of well recovered patients after capsular stroke. Brain
129, 791–808.

Ghosh, A., Rho, Y., McIntosh, A.R., Kötter, R., and Jirsa, V.K. (2008). Noise
during rest enables the exploration of the brain’s dynamic repertoire. PLoS
Comput. Biol. 4, e1000196.

Grefkes, C., and Fink, G.R. (2012). Disruption of motor network connectivity
post-stroke and its noninvasive neuromodulation. Curr. Opin. Neurol. 25,
670–675.

Greicius, M.D., Supekar, K., Menon, V., and Dougherty, R.F. (2009). Resting-
state functional connectivity reflects structural connectivity in the default
mode network. Cereb. Cortex 19, 72–78.

Groppa, S., Bergmann, T.O., Siems, C., Mölle, M., Marshall, L., and Siebner,
H.R. (2010). Slow-oscillatory transcranial direct current stimulation can induce
bidirectional shifts in motor cortical excitability in awake humans. Neurosci-
ence 166, 1219–1225.

Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen,
V.J., and Sporns, O. (2008). Mapping the structural core of human cerebral
cortex. PLoS Biol. 6, e159.

Haimovici, A., Tagliazucchi, E., Balenzuela, P., and Chialvo, D.R. (2013). Brain
organization into resting state networks emerges at criticality on a model of
the human connectome. Phys. Rev. Lett. 110, 178101.

Haller, S., Kopel, R., Jhooti, P., Haas, T., Scharnowski, F., Lovblad, K.O.,
Scheffler, K., and Van De Ville, D. (2013). Dynamic reconfiguration of human
brain functional networks through neurofeedback. Neuroimage 81, 243–252.

Hanslmayr, S., Aslan, A., Staudigl, T., Klimesch, W., Herrmann, C.S., and
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