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In contrast to its well-established role in alleviating skeleto-motor symptoms in

Parkinson’s disease, little is known about the impact of deep brain stimulation (DBS) of

the subthalamic nucleus (STN) on oculomotor control and attention. Eye-tracking data

of 17 patients with left-hemibody symptom onset was compared with 17 age-matched

control subjects. Free-viewing of natural images was assessed without stimulation as

baseline and during bilateral DBS. To examine the involvement of ventral STN territories

in oculomotion and spatial attention, we employed unilateral stimulation via the left and

right ventralmost contacts respectively. When DBS was off, patients showed shorter

saccades and a rightward viewing bias compared with controls. Bilateral stimulation

in therapeutic settings improved saccadic hypometria but not the visuospatial bias. At

a group level, unilateral ventral stimulation yielded no consistent effects. However, the

evaluation of electrode position within normalized MNI coordinate space revealed that

the extent of early exploration bias correlated with the precise stimulation site within

the left subthalamic area. These results suggest that oculomotor impairments “but

not higher-level exploration patterns” are effectively ameliorable by DBS in therapeutic

settings. Our findings highlight the relevance of the STN topography in selecting contacts

for chronic stimulation especially upon appearance of visuospatial attention deficits.

Keywords: deep brain stimulation, subthalamic nucleus, visual attention, neglect, oculomotor control, unilateral

stimulation, basal ganglia, viewing bias

INTRODUCTION

Patients with Parkinson’s disease develop a wide range of impairments other than the well-known
skeletomotor symptoms. Among them, abnormal eye-movements and deficient spatial attention
can potentially impair the sampling of visual information and impact patients’ quality of life.

Previous research has shown that ocular movements are affected in Parkinson’s disease
(reviewed in Pinkhardt and Kassubek, 2011; Stuart et al., 2014). The most common finding is a
reduction of saccade amplitudes and an increase in the latency to initiate a saccade. These changes
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FIGURE 5 | Stimulation sites of the most ventral contacts used in the unilateral stimulation conditions. Marker colors code the amount of initial bias (◦

visual angle) with cool colors representing deviations to the left and warm colors deviations to the right. Stimulation sites, where increased voltage induced torticollis

prior to determining the side-effects threshold, are depicted as diamond-shaped markers. The line represents the outcome of the multiple regression model, i.e., the

best direction for predicting the initial bias during unilateral left stimulation. Variability of the location along the antero-posterior axis explained most of the bias variance,

followed by the medio-lateral direction. Outlines of subcortical structures are based on 3D models of the ATAG Atlas (Keuken et al., 2013).

were significantly improved only by bilateral stimulation.
The extent of the improvements (∼40%) was similar
to the change in motor symptoms measured with the
UPDRS-III scale (∼37%), indicating similarities between
the responsiveness of the skeletomotor and oculomotor
systems. However, patients’ exploration bias displayed during

OFF was not counteracted by clinical stimulation. Only
unilateral left stimulation seemed to modify biased viewing
behavior at the beginning of exploration; this effect was not
apparent at the group level since it was dependent on the
precise electrode location within the ventral subthalamic
area.
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Limitations
This paper provides a set of observations on the basis of
explorative data analysis. One limitation of our study is
that neither patients nor experimenters were blinded to the
experimental conditions because the threshold for side effects
in the unilateral stimulation condition had to be determined.
However, patients were not aware of the hypotheses of our study.

Visuospatial attention deficits might be more pronounced
after medication withdrawal. However, we had to renounce initial
plans to conduct the study after withdrawal of antiparkinsonian
medication because discomfort resulting from severe Parkinson’s
disease symptoms caused a large drop-out rate after the
first recording session. Furthermore, three patients showed no
deterioration in motor symptoms when stimulation was off,
which might be related to fluctuations at different day times
or fatigue after completing the ON recording, and might have
reduced our statistical power.

Finally, the order of conditions was not fully balanced given
that the first recording in 8 of the 17 patients (and 6 of the
14 recorded in four conditions) was performed ON DBS to
reduce our patients’ expenditure of time. Task novelty might have
affected behavior, however, we would not expect any consistent
changes in free-viewing related to learning over time.

Oculomotor Impairments in Parkinson’s
Disease
This positive effect of clinical STN-DBS on saccade length
is in line with previous reports of improvement by DBS in
saccade length during volitional memory-guided tasks (Rivaud-
Péchoux et al., 2000; Fawcett et al., 2010), anti-saccade tasks
(Briand et al., 1999; Fawcett et al., 2010; Yugeta et al., 2010),
smooth pursuit (Nilsson et al., 2013), and visually triggered
saccade tasks (Sauleau et al., 2008; Yugeta et al., 2010). As early
neurophysiological studies in monkeys showed no involvement
of the basal ganglia in spontaneous exploration (Hikosaka and
Wurtz, 1983), it was not certain that effects seen in those simple
tasks would generalize to free-viewing behavior. Only recent
studies in humans (Sieger et al., 2013) are more in line with our
findings, showing that the basal ganglia are active during free
viewing, and that exploratory visuomotor behavior thus can be
affected in Parkinson’s disease as a consequence of basal ganglia
dysfunction.

Our results extend a previous report about free-viewing
behavior and the effects of DBS in patients with Parkinson’s
disease (Schmalbach et al., 2014). In agreement with their results,
we did not find significant changes in saccade lengths between
bilateral and unilateral stimulation conditions. However, as we
included a healthy control group and patients in a baseline
condition without DBS, we were able to show that saccade length
during free-viewing is reduced in the parkinsonian state and
improved by clinical stimulation. Furthermore, patients’ within-
trial saccade length variability was reduced in comparison with
controls. This variability was increased by bilateral DBS to a level
more similar to that of controls. However, the impact of these
oculomotor alterations on behavior is not clear since the total
explored area was not reduced.

Exploration Bias during Free-Viewing
Behavior
In agreement with previous research showing attentional
biases in patients with left-dominant symptoms in other tasks
(Villardita et al., 1983; Starkstein et al., 1987; Ebersbach et al.,
1996; Lee et al., 2001; Laudate et al., 2013), our patients
also showed a slight rightward bias during free-viewing. The
difference to control subjects was most pronounced during the
first eye movements, which are usually biased to the left in
healthy right-handers (Ossandón et al., 2014). This attentional
bias was neither explained by a directional bias in saccade lengths
(i.e., rightward saccades were not significantly longer or more
abundant than leftward saccades) nor by differences in fixation
durations between hemifields. The exploration bias was not
compensated by clinical stimulation even though stimulation
decreased markedly the discrepancy between left and right
motor symptoms. In the study by Schmalbach et al. (2014),
Parkinson’s disease patients did not show biased free-viewing
behavior during clinical stimulation. This discrepancy may be
explained by the small size of the bias, which became evident
only by comparison with a control group. Moreover, Schmalbach
et al. (2014) included patients with both left- and right-dominant
symptoms whereas we evaluated only patients with left hemibody
onset of symptoms, who are more likely to show attentional
bias (Villardita et al., 1983; Starkstein et al., 1987; Ebersbach
et al., 1996; Lee et al., 2001; Laudate et al., 2013). As mentioned
above, the bias was not improved by clinical bilateral stimulation
like some of the oculomotor parameters, potentially suggesting
differences in the role of the basal ganglia in skeletomotor,
oculomotor and attentional functions. This discrepancy may
result from differences in topographic organization of these
functions within the STN, which remains to be elucidated
(Alkemade et al., 2015).

Contrary to our expectations, unilateral stimulation in the
ventral subthalamic area caused no consistent shifts of viewing
biases but higher variability. A rightward bias after left STN-
DBS as reported by Schmalbach et al. (2014) would have been in
agreement with the assumption of a disinhibitory effect of DBS
and the known circuitry of the basal ganglia ocular movement
control. In this model, inhibition of the STN results in decreased
excitatory input to the SNr and consequently in a reduced
inhibitory tone to the ipsilateral superior colliculus—biasing
viewing behavior to the contralateral right visual field. Although
we did not find an effect of unilateral stimulation at the group
level, the multiple regression analysis revealed a dependency
between bias and the position of the activated electrode contact
within the left STN. Those patients who were stimulated in
the posterior part of the STN showed a stronger bias toward
the right. To understand this relationship it is necessary to
look into the fine-grained topographic organization of the basal
ganglia circuit, which is still not completely clear, especially in
humans. Previous studies in non-human animals showed that
the efferents from the STN to the SNr are similarly arranged,
especially in the latero/medial axis (Smith et al., 1990; Joel
and Weiner, 1994; Parent and Hazrati, 1995). Additionally, in
monkeys and cats, projections from the SNr to the superior
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colliculus include abundant uncrossed and broadly distributed
projections, as well as less numerous crossed projections to the
contralateral SC departing from the anterolateral SNr (Beckstead
et al., 1981; Jiang et al., 2003). Assuming a similar organization
of the human STN/SNr complex, more anterior STN stimulation
(i.e., disruption of pathological hypersynchronization) should
result in reduced activity of the corresponding anterolateral SNr,
with an impact on both crossed and uncrossed projections.
In contrast, more posterior stimulation of the STN should
predominantly result in reduced activation of only the uncrossed
population. This would cause, in the case of ventral left posterior
stimulation, a bias to the right due to exclusive disinhibition of
the ipsilateral SC, whereasmore anterior stimulation would result
in more balanced disinhibition of both SC and consequently
no bias. Yet it is unclear why this occurs only for left
stimulation and why it affected predominantly the first fixation of
each trial.

An important question is whether the exploration biases
reported here represent an inability to detect and respond to
stimuli and whether this happens to an extent that would
affect them in everyday activities. The average bias observed at
the group level was rather small, and thus has probably only
limited impact on daily life. Nonetheless it could impact patient’s
ability to drive (e.g., Uc et al., 2006; Classen et al., 2014) and
increase the incidence rate of bumping into objects (Davidsdottir
et al., 2005). Individuals might experience more pronounced
visuospatial deficits, which is why individual assessments of
driving capabilities would be advisable (Buhmann et al., 2014).
Clinical DBS provides no simple remedy for such impairments,
yet trying to select different electrode contacts for stimulation
might restore balanced attention and recover normal exploration
behavior. On the other hand, considering the association between
posterior sites and bias presented here, we would recommend
to routinely evaluate whether an attentional bias may have been
induced by DBS, especially in rare cases of unilateral stimulation
or when the posterior subthalamic area is targeted as has been

suggested for the treatment of tremor suppression (Power et al.,
2001; Plaha et al., 2006; Xie et al., 2012).

In summary, patients with Parkinson’s disease made shorter
saccades with a reduced length variability, and were slightly
biased toward the right in comparison with controls. Saccade
length was significantly improved by clinical stimulation,
whereas the effects of unilateral stimulation of the ventral
subthalamic area on exploration were dependent on the
individual stimulation site and not seen at the group level. The
findings presented provide new evidence for the involvement
of the basal ganglia in self-directed visual exploration and
will hopefully guide further research on the treatment
of patients with visuospatial attention deficits or cervical
dystonia.
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