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ABSTRACT

The human visual system is able to distinguish naturally occurring categories with exceptional speed and accu-
racy. At the same time, it exhibits substantial plasticity, permitting the seamless and fast learning of entirely novel
categories. Here we investigate the interplay of these two processes by asking how category selectivity emerges
and develops from initial to extended category learning. For this purpose, we combine a rapid event-related MEG
adaptation paradigm, an extension of fMRI adaptation to high temporal resolution, a novel spatiotemporal anal-
ysis approach to separate adaptation effects from other effect origins, and source localization. The results demon-
strate a spatiotemporal shift of cortical activity underlying category selectivity: after initial category acquisition,
the onset of category selectivity was observed starting at 275 ms together with stronger activity in prefrontal
cortex. Following extensive training over 22 sessions, adding up to more than 16.600 trials, the earliest category
effects occurred at a markedly shorter latency of 113 ms and were accompanied by stronger occipitotemporal
activity. Our results suggest that the brain balances plasticity and efficiency by relying on different mechanisms

to recognize new and re-occurring categories.

© 2016 Elsevier Inc. All rights reserved.

Introduction

One of the most essential tasks of our visual system is to make sense
of the complex signals it receives from the world around us. A central
aspect of this is the ability to group objects into various categories,
allowing for considerable simplification, generalization and supporting
higher cognitive function. To advance our understanding of the underly-
ing cortical mechanisms, a large body of experimental work focuses on
temporal aspects of category selectivity, asking for the earliest point in
time at which category information is extracted. As a result, we now
have ample psychophysical and electrophysiological evidence that nat-
urally occurring categories can be extracted in only little more than
100 ms of processing (Carlson et al., 2013; Antzoulatos and Miller,
2011; Cichy et al., 2014; Hung et al., 2005; Kirchner and Thorpe, 2006;
Liu et al., 2009; 2002; Sugase et al., 1999). However, apart from the
necessity for fast and robust categorization of re-occurring categories,
our ever-changing environment poses the additional challenge to retain
considerable plasticity in order to support the rapid learning of entirely
novel categories. Here, the study of naturally occurring categories pro-
vides only limited possibilities, as it focuses on categories with which
we already have extended experience (for instance, all of us can be con-
sidered face- and house-experts, as these categories play a vital role in
our everyday life). It therefore remains an open question, how cortical
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representations and the temporal dynamics of category selectivity de-
velop from the initial learning of a category towards category expertise.

To elucidate this issue, we performed a longitudinal study in which
we investigated the impact of extended category training of two artifi-
cial visual categories in a parametric feature space on the visually
evoked responses using a rapid event-related magnetoencephalogra-
phy (MEG) adaptation paradigm. Adaptation paradigms, also known
as repetition-suppression and repetition-enhancement (Krekelberg
et al,, 2006; Segaert et al., 2013), are widely applied in the field of func-
tional magnetic resonance imaging (fMRI; see Grill-Spector and Malach,
2001 for an adaptation review) and offer the advantage to bypass
the limited spatial resolution of any imaging method by focusing on
response-changes in neuronal subpopulations which are measurable
in the average response of a pre-defined region of interest (ROI). Adap-
tation paradigms therefore have the potential to reveal differences in
neuronal selectivity that would remain unnoticed in more traditional
univariate designs. While the limits of spatial resolution are even
more drastic in case of MEG/EEG, these methods offer the possibility
to investigate cortical processes with high temporal resolution. A com-
bination of a rapid, event-related MEG adaptation paradigm with per-
ceptual category training is therefore a promising candidate to resolve
changes in the temporal aspects of category processing, indicative of
changes in the underlying cortical mechanism. An additional advantage
of our longitudinal paradigm is a control for effects of low-level stimulus
properties. Data recorded during a baseline session allowed us to
exclude the possibility that potentially found category effects are an
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inherent low-level property of the utilized feature space. Such differences
in low-level statistics have previously lead to considerable challenges in
the interpretations of category effects in studies using naturally occurring
categories (Crouzet and Thorpe, 2011; Rossion and Jacques, 2008; Thierry
et al., 2007; VanRullen, 2011).

We investigated the emergence and development of category selec-
tivity by recording MEG data in a baseline session, prior to any category
training, a second time after five training sessions, and a third time after
extensive category training in 22 training sessions. Category selectivity
was estimated by comparing the visually evoked responses to stimuli
that were either preceded by a different adaptor stimulus from the
same category (category-internal), or by an adaptor stimulus of a differ-
ent category (category-external), while holding low-level stimulus dif-
ferences constant. To analyze the high-dimensional MEG data, a novel
spatiotemporal analysis approach was employed. Building on the ob-
servation that true adaptation effects should occur in the same cortical
regions activated previously by the adaptor stimulus, the analysis
exploits the linear additivity of MEG sources in order to explicitly sepa-
rate experimental effects, i.e. differences between category-internal and
-external conditions, into adaptation- and other, non adaptation-related
effects. In the adaptation phase of the experiment, each trial consisted of
two stimuli: an adaptor and a repetition stimulus. Interpreting each
MEG topography as a high-dimensional vector, the cortical response
to the second stimulus can be understood as a linear combination of
(a) a re-activation of the regions previously responding to the adaptor
stimulus, as required for adaptation, and (b) other cortical regions, acti-
vated uniquely during the processing of the second stimulus. This lead
to the insight that the response to the first, adaptor stimulus can be
used to decompose experimental effects, observed in the second re-
sponse, into adaptation-based and non-adaptation effects. Importantly,
the involved vector projection maps the 271 dimensional sensor space
onto a single, yet highly informative subspace and thereby avoids prob-
lems of multiple comparison (see Methods and Materials for details).

Using this approach to focus on effects driven by adaptation we ob-
served a temporal shift in category selectivity from a latency of 275 ms
after initial category acquisition to only 113 ms following extensive
training. This speedup suggests a marked change in the cortical network
mediating the categorization of visual input. Indeed, source analysis re-
vealed an anterior-to-posterior shift of cortical activity from initial to
extensive category training. While the time-window of category selec-
tivity found after five training sessions exhibited stronger activation in
the prefrontal cortex (PFC), the early category effects found after 22
training sessions showed increased activation in occipitotemporal re-
gions. Previous theories on visual categorization viewed either PFC or
regions in the ventral stream as the origin of category selectivity. Our
findings now reconcile these contrasting views by suggesting that
both processes are likely to contribute to categorization at different
stages of category learning. While PFC is involved in the categorization
of rather novel and dynamic categories, extensively used categories
seem to obtain a privileged status and are resolved faster relying more
heavily on cortical resources in occipitotemporal cortex.

Materials and methods
Participants

Nine healthy, right-handed subjects (five female, aged 19-30) par-
ticipated in the study. All subjects had normal or corrected-to-normal
visual acuity, were naive to the purpose of the study and gave written
informed consent to participate. The experimental procedures were ap-
proved by the ethics committees of the University of Osnabriick and the
Arztekammer Hamburg. Each subject participated in a total of 23 exper-
imental sessions (one baseline session and 22 training sessions). MEG
data were recorded during the first baseline session, as well as after
training sessions five and 22. The MEG recording from subject nine in

session 22 was excluded from the analyses due to excessive noise in
the data.

Stimulus space

Similar to previous work with macaques (Sigala et al., 2002) and
humans (Kietzmann and Koénig, 2010; Nosofsky, 1991; Reed and
Friedman, 1973; Sigala et al., 2002), category training was based on
two artificial categories of Brunswik faces (Brunswik and Reiter,
1938), defined in a four-dimensional, parameterized stimulus space
(Fig. 1), also known as a factorial morphspace (Folstein et al., 2012a;
Goldstone et al., 1996; Gureckis and Goldstone, 2008). Two of the di-
mensions were category-relevant (eye height and eye separation),
while the two others (mouth height and nose length) were assigned
pseudo-randomly, ensuring that no stimulus clusters of the same catego-
ry existed that could potentially render these task-irrelevant dimensions
informative. A linear category boundary split the category space of the
two relevant dimensions in half, such that no single stimulus property
was decisive for the category membership. This design is optimized to
search for effects of category selectivity, since no linear re-weighting of
singular input dimensions will lead to optimal training performance.
The overall stimulus space consisted of 60 stimuli, six of which defined
the respective category boundary and were not included in the training
and testing. The final two categories comprised 27 stimuli each. More-
over, the category boundary was rotated by 90° for every other subject.
The subjects were at no point in time instructed about the design of the
stimulus space or the relevant category dimensions. Post training, no par-
ticipant was able to verbally describe the relevant category rule. All stim-
uli shown during training and the MEG adaptation sessions were
presented using the Psychophysics Toolbox 3 (Brainard, 1997; Kleiner
et al,, 2007) running under Matlab 2010a.

Category training

In order to allow subjects to learn the two artificial categories of faces,
they received category training in a total of 22 sessions with 756 trials
each. Here, we largely followed our previous procedure (Kietzmann and
K6nig, 2010). In each training trial, subjects were presented with a single
stimulus and were then asked to categorize it as either category A or B
with their index- or middle-finger. Auditory feedback was provided as
training signal. A high-pitch tone indicated a correct response, whereas
a low-pitch tone and a forced break of two seconds indicated an incorrect
response. To prevent a fixed association between the category member-
ship and motor response, the finger used to indicate the category decision
was switched three times across each training session. The subjects were
notified of the switches.

Rapid event-related adaptation paradigm

To estimate the time-course of electrophysiological category effects,
we used a rapid event-related MEG adaptation paradigm. This approach
is similar to the more common fMRI adaptation (Grill-Spector and
Malach, 2001) or repetiton suppression/enhancement, and has only
recently been introduced to the field of EEG and MEG (Caharel et al.,
2009; Harris and Nakayama, 2007; Huberle and Lutzenberger, 2013;
Marinkovic et al., 2003; Scholl et al., 2014; Vizioli et al., 2010; Zimmer
and Kovacs, 2011). While fMRI adaptation paradigms are traditionally
associated with effects of repetiton suppression, repetition enhance-
ment is now commonly observed across a wide variety of cortical
regions (Krekelberg et al., 2006; Segaert et al., 2013). Especially for
experiments investigating adaptation effects across time, a temporal se-
quence of early enhancement and late suppression has been reported
(Marinkovic et al., 2003; Petit et al., 2006), in line with the prediction
of the more recent accumulation model of adaptation (James and
Gauthier, 2006). Taken together, the repeated activation of neuronal
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Fig. 1. Stimulus space. Subjects were trained to distinguish two artificial categories of faces, defined in a four-dimensional parametric feature space. Two dimensions were category-
relevant (eye height and eye separation), and two were irrelevant (nose length and mouth height). No single feature was decisive for the category of a given face, only the
combination of features allowed for correct categorization. The category boundary was rotated by 90° for every other subject.

populations can either lead to a suppressed or an enhanced response
amplitude in fMRI and MEG/EEG.

During the rapid MEG adaptation paradigm applied here, partici-
pants performed a delayed match-to-category (DMC) task, indicating
whether two subsequently presented stimuli belonged to the same or
a different category (Fig. 2a). To test for effects of neuronal adaptation,
i.e. repetition enhancement and repetition suppression, we analyzed
the magnetic fields evoked by the second stimulus, when either preced-
ed by a different adaptor stimulus from the same category or an adaptor
from a different category. In total, 432 trials were recorded per session
and subject, including 216 trials with a category-internal and 216 trials
with a category-external adaptor stimulus. The sequence of category-
internal and category-external conditions was randomized across trials.
To control for low-level feature differences in the two adaptation con-
ditions, all category-internal and category-external trials were matched
in distance and direction in the two relevant dimensions of feature space
(Fig. 2b). This has the additional advantage that no linear re-weighting of
the category-relevant dimensions can account for category selectivity
(Folstein et al., 2012a; Goldstone et al., 2001), because all category inter-
nal and external adaptation trials will be affected likewise. Our setup is

therefore tuned for observing effects of category selectivity, rather than
attentional re-weighting of (single) features, required for later category
extraction. During the randomized adaptation trials, a fixed mapping of
experimental condition to motor response was prevented by switching
the target keys for the two answers after half of the experiment. The struc-
ture of the adaptation trials was as follows. First, a fixation cross was pre-
sented for 800 ms with an SOA of + 100 ms. Then, a first stimulus was
presented for 500 ms, followed by an inter-stimulus-interval of 250 ms.
The second stimulus was again shown for 500 ms. Finally, after an addi-
tional delay of 500 ms a question mark was displayed on the screen, indi-
cating to the subject that a response can be given (Fig. 2a). This timed
response was introduced to keep presentation of the second stimulus
free of cortical activity related to the motor-execution.

MEG acquisition

MEG data were recorded in a baseline session, prior to category
training, as well as after five and 22 training sessions. The selection of
five and 22 training sessions was based on previous work using a similar
feature space, in which subjects were able to perform at >90% accuracy
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Fig. 2. Adaptation paradigm. To test for electrophysiological correlates of category information, an adaptation paradigm was used. Each trial either crossed the category boundary
(category-external) or stayed within a category (category-internal). (a) Temporal sequence of an adaptation trial. (b) Low-level properties of the category-internal and category-
external adaptation trials were controlled by matching the distance and slopes of the corresponding stimulus-pairs. Exemplary trials are highlighted in color (category-external in red,

category-internal in blue).
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after only five training sessions (Kietzmann and Konig, 2010), while
exhibiting high-level category effects only after prolonged training.
MEG data were acquired at 1200 Hz using a CTF whole-head system
with 271 axial gradiometers (CTF275, VSM MedTech). The position of
the participants' head was continuously recorded using three head
localization coils (NAS/LPA/RPA). Moreover, a bipolar electrocardio-
gram (ECG) and an electrooculogram (EOG) with three channels were
recorded. The EOG electrodes were placed below the eyes and on the
forehead. The reference was positioned on the tip of the nose. The ex-
perimental stimuli were back-projected on a screen with a LCD projec-
tor (Sanyo XP51) at 60 Hz refresh rate. The presentation distance was
60 cm, leading to a display size of 2°x3.3° of visual angle.

Data analyses

All analyses were performed using custom code in Matlab R2010a
(Mathworks, Natick, MA, USA), fieldtrip (Oostenveld et al., 2011) and
Brainstorm (Tadel et al., 2011).

Preprocessing

After downsampling the data to 600 Hz, artifacts due to muscle ac-
tivity, sensor-jumps and extreme noise were first detected automatical-
ly using fieldtrip, followed by manual cleaning of the data. To account
for sensor drifts, the data were high-pass filtered at 1 Hz. Moreover,
frequencies above 100 Hz and the artifactual frequency bands around
50 Hz and 60 Hz were excluded using a zero-phase Butterworth IIR
filter. To remove eye-related and cardiac artifacts from the data, we
used an automated procedure based on an independent component
analysis. The underlying algorithm relies on a correlation-based and
a weight-based artifact-metric computed for each independent compo-
nent. Components surpassing a selected threshold were labeled as
artifacts and removed from the data. The optimal thresholds were
determined automatically based on a receiver operator characteristic
(ROC) analysis applied to a subset of the data for which two experts
had classified components as artifacts. The resulting algorithm was able
to detect 98.1% of the components tagged by the experts, with only 0.3%
false positives (see Material S1 and Fig. S1 for more details). Without
making use of additional eye-tracking data, our approach reaches perfor-
mance levels of a state of the art algorithm for automatic artifact removal
that require ground-truth eye-movement data (Plochl et al,, 2012). Final-
ly, although our fully randomized design prevents systematic effects of
head-position, we removed any residual effects from our data. We first
extracted a six dimensional description of the head position and direction
from the simultaneously recorded localization coils (NAS/LPA/RPA) and
used this to regress out the effects of head-position (Stolk et al., 2013).
All evoked potentials were baseline-corrected with respect to the
700 ms fixation period prior to the presentation of the first stimulus.

Spatiotemporal projection approach: separating effect sources

The current experiment makes use of a rapid event-related MEG ad-
aptation paradigm. In each trial, two stimuli are presented: one adaptor
and subsequently a second, repetition stimulus. Two experimental con-
ditions are compared. The second stimulus can either be of the same
category as the adaptor, or of a different category. Differences between
these two conditions thus indicate category selectivity. Common to
every adaptation paradigm, experimental effects can either originate
from true adaptation, i.e. the differential re-activation of category selec-
tive regions (Fig. 3a), or from other sources that are uniquely activated
during the presentation of the second stimulus. As an example of the
latter, if category-internal and category-external conditions were re-
ported unbalanced, via different hands, condition-dependent differ-
ences in the activations of the two motor-cortices would be expected.
Such effects, despite originating from category-related signals, would
not be due to adaptation (please note that this example is for illustration
purposes only, as the current design balanced different motor responses
across experimental conditions).

In order to separate these different adaptation and non-adaptation
effect sources, we here employ a spatiotemporal analysis approach
that decomposes the MEG signals of the second stimulus into parts
that are due to the re-activation of regions previously involved in
processing the adaptor, and parts that cannot be accounted for by re-
activation (Fig. 3b).

Effects due to adaptation. To focus on adaptation effects at a given point
in time, we project the high-dimensional MEG response vector of the

second stimulus (7°) onto the normalized adaptor response vector (a):
— — A\ 2
Tg= ( T a) a.

The adaptation-based category effect (ace) is then computed as the
difference in amplitude between projected category external (¢’) and

internal (T) response vectors (Fig. 3¢), yielding a scalar estimate of
the adaptation-based category effect:

— = .
1

N - .
ace:}ei,\—‘la =e.a—1i-a

Applied for every point in time, this projection yields one-
dimensional “effect traces” for every participant and session, which are
subsequently subject to statistical analyses (Fig. 3e).

To define the projection vector, a, we here chose to use the group av-
erage response, evoked by the first, adaptor stimulus, as recorded in the
baseline session (time window between 0 and 300 ms after stimulus
onset, low-pass filtered at 35 Hz using a zero-phase Butterworth IIR fil-
ter, Fig. 4). Using the same projection vector as basis for effect estima-
tion has the advantage that it allows for comparisons of effect sizes
across experimental sessions. If different projection vectors were used
for every session, it would introduce unnecessary ambiguity as possible
changes in effect-sizes might be merely due to changes in the underly-
ing projection vector. To ensure that the current approach is appropri-
ate, we performed a non-parametric cluster test based on an F-
statistic in which we compared the responses to the first stimulus across
all three sessions (baseline, session five, session 22) within the first
300 ms of processing (the cluster-threshold was set to p < 0.05, cluster
inclusion was at alpha < 0.05). No significant differences were found, in-
dicating that the same projection vector can be used across sessions. Fi-
nally, to be able to compare effects across time, the projection vector

(@) was normalized to unit length (@) at each sample.

Non-adaptation effects

While the projection approach is straight-forwardly applicable to
adaptation effects, as the adaptor stimulus uniquely defines the projec-
tion target, non-adaptation based effects can occur independently, ren-
dering a projection approach inapplicable: given adaptation-based
effects have been accounted for via projection, such residual effects
can occur anywhere in the space, orthogonal to the adaptation vector.
Thus, to test for such residual, non-adaptation effects, we statistically

compared the previously unexplained parts of the external (¢’) and

internal (T) vectors (shown as a projection onto the orthogonal plane
in Fig. 3d), which reside in the original 271-dimensional sensor space.
In summary, we use the response to the first, adaptor stimulus to de-
compose the response to the second, category-external or category-
internal, stimulus into two possible sources: adaptation-based effects,
and other, non-adaptation effect sources. In contrast to this, more tradi-
tional analyses of adaptation paradigms leave the origin of observed ef-
fects ambiguous, and thereby severely complicate their interpretation.
In addition to this important advantage, the current projection method
has further statistical benefits because adaptation-based effects can be
investigated using a one-dimensional projection-signal, created from
the original 271 dimensional data. This circumvents the problems of
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number; t, time point.

multiple comparisons occurring when all sensors are considered indi-
vidually. Traditionally, this problem is solved by either selecting sensors
of interest a priori (Rossion and Jacques, 2008), or alternatively by
testing all sensors individually and afterwards controlling for multiple
comparisons, for instance by applying non-parametric cluster-based
correction methods (Ehinger et al., 2015; Maris and Oostenveld,
2007). Unfortunately, both options are not without problems. An a
priori, fixed selection of sensors is problematic, if it is unclear which
sensors should be selected or, even more so, if sensors of interest change
over time. The second solution, testing all sensors and time-points indi-
vidually while applying a cluster-based correction, provides the liberty
of observing effect clusters anywhere in space and time, but at the
cost of much decreased statistical sensitivity. These limitations are over-
come by the current projection method. Another statistical consideration
worth noting is that the data used for the projection vector are indepen-
dent of the experimental data in question (comparing category-internal
and category-external responses in the second stimulus). This avoids
the (spatial) dangers of double-dipping in neuroimaging (Kriegeskorte
et al., 2009). Notably, the current projection method is directly applicable

to fMRI adaptation paradigms. In fMRI, the traditional use of ROIs, too,
exhibits the problem that observed effects are intermixed and therefore
cannot be unambiguously attributed to mechanisms of adaptation. That
is, effects observed can either originate from adaptation, or other effect
sources.

A further benefit of our approach, exploited later in this paper, is that
the effect decomposition allows for efficient source localization of MEG
data. Effects due to adaptation can be interpreted as a differential activa-
tion of the regions contributing to the first, adaptor stimulus. Therefore,
to source localize the effect, the data from the adaptor stimulus can be
used. Put differently, the adaptor functions as a spatiotemporal localizer
that explicitly focuses the analysis on stimulus-repetition effects. Thus,
if an effect is found via projection, the same localizer determines the un-
derlying sources. This approach resembles the standard methodology
used for analyses based on independent components, for which effects
are first investigated based on component activations and localized
based on the component topography (Ehinger et al., 2014; Makeig
et al,, 2002; Pockett et al., 2007; Tsai et al., 2014). The assumption of
our, and in fact any localizer approach, is that the same cortical
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processes are active during the trials used to define the localizer and the
experimental trials of interest. While many experimental settings meet
this assumption, adaptation paradigms are particularly suited for this
approach. This is due to the fact that they already presuppose the
same cortical regions to be active during the processing of the first
and second stimulus. The use of the first-stimulus response as a spatio-
temporal filter for the evoked response to the second is therefore
simply a consequent translation of the experimental paradigm to
the analysis methodology.

It should be noted that the projection approach, described so far, re-
lies on the assumption that similar cortical regions are active at compa-
rable latencies, because dand 7 are taken from the same point in time. If
responses exhibit significant temporal shifts effects can potentially be
missed. To partially counter this effect, we here low-pass filtered the
adaptor stimulus, resulting in a temporally more robust fit. As a theoret-
ical alternative, one could use the full response matrices (sensor X time)
of adaptor and repetition to explicitly test for effects at all possible de-
lays. Instead of an effect trace, this yields an effect matrix (M):

M=R-A

The diagonal of this matrix corresponds to a zero-delay and there-
fore to the effect traces used here. While able to detect effects at differ-
ent latencies, this approach introduces a quadratic increase in the
number of tests. The required corrections for multiple comparisons
thereby decrease overall sensitivity.

Statistical analyses

For statistical analyses of the adaptation effects, yielded through our
spatiotemporal projection method, we computed the one-dimensional
response traces for every participant, condition, and session (Fig. 3e).
Based on these signals, we then tested for training-induced category ef-
fects, following a two-staged approach. First, we temporally localize
time-windows of interest, i.e. time-windows exhibiting significant

category effects (p < 0.05) by performing a paired t-test at every point
in time, contrasting category-external and category-internal trials. Fol-
lowing this, we investigated, whether the observed category selectivity
was indeed the result of category training. To accomplish this, we tested,
for each candidate time-window, whether the respective effect is signif-
icantly larger after training compared to the difference observed in the
baseline session (training interaction). This was accomplished by esti-
mating the corresponding interaction effect size and its 95% confidence
intervals. Corrections for multiple comparisons across time were per-
formed at this final stage by applying a Bonferroni correction at the
cluster-level, i.e. by enlarging the 95% intervals according to the number
of clusters tested in each session. As a result of this statistical procedure,
any cluster reported in the following will not only have shown signifi-
cant category effects, but also a significant training interaction, verifying
that the found effects are indeed caused by category training. Testing for
a training interaction is an important additional prerequisite in investi-
gations of developing category selectivity, as observed differences be-
tween category-internal and category-external conditions could also
be an inherent property of the selected feature space and not the result
of category training. This possibility is ruled out by the statistical proce-
dure described.

Summing up, we focused on adaptation-based effects by combining
a spatiotemporal projection method with rigorous statistical analyses.
This allowed us to overcome the need to use heuristics in selecting
sensors and time-windows of interest, while controlling for multiple
comparisons in space and time. The only free parameter of the overall
approach for finding adaptation-based effects is the p-value for the
selection of temporal candidate windows, which was selected to be
p <0.05.

To test for non-adaptation effects, we performed a two-sided t-test
for every point in time and space, and corrected the family wise error
rate using a nonparametric, cluster-based permutation test (cluster in-
clusion threshold alpha < 0.05, left-and right-sided cluster p < 0.025, re-
spectively). This approach can find “unpredicted” effects, but at the cost
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of decreased statistical sensitivity. All analyses performed, adaptation
and non-adaptation, focus on the first 300 ms of processing after stimu-
lus onset, as this time-window approximately resembles typical fixation
durations during free-viewing of natural scenes (Underwood et al.,
1998).

Behavioral relevance

To estimate the behavioral relevance of the observed category
effects, we contrasted the effect size of adaptation trials in which the
response of the subject was correct and trials in which an incorrect
response was given. The reasoning of this approach was that if the
found effects are behaviorally relevant, larger effects should be expected
upon correct performance in the delayed match-to-category task. Simi-
lar to the statistical analyses of the training-interactions, we focused on
clusters that exhibited significant category effects and training interac-
tions, estimated the effect size and bootstrapped the respective upper-
and lower bounds of the 95% confidence intervals (with replacement)
while applying a Bonferroni correction for multiple comparisons at the
cluster level. Matching the behavioral accuracy in the DMC task, on av-
erage 136 incorrect trials were compared to 277 correct trials in session
five, whereas 94 incorrect trials were compared to 277 correct ones in
session 22.

Source analysis

To compare source activity on the cortical surface, we used the
SLORETA algorithm (Pascual-Marqui, 2002), as implemented in the
Brainstorm software (Tadel et al., 2011), on the adaptor stimulus data,
which was used as projection target, to localize the adaptation-specific
category effects. For every subject, we first segmented the individual
MRI into white and gray matter using Freesurfer (Dale et al., 1999;
Fischl et al., 1999). We then performed the source reconstruction
based on each individual anatomy and aligned the results to MNI
space (Colin27) using spherical averaging of the cortical surfaces.
For statistical analyses, we contrasted the average source activity
(L2-Norm) during the earliest time-window of category selectivity in
session five (275-293 ms) and session 22 (113-140 ms) at every surface
vertex and applied a clusterwise correction for multiple comparisons
based on a nonparametric permutation test (Maris and Oostenveld,
2007). Only vertices showing p < 0.05 were included in the cluster
estimates.

Results
Behavioral data on category training

Subjects were trained to categorize two artificial categories of faces
defined in a parametric feature space (Fig. 1). Training lasted for a
total of 22 sessions consisting of 756 training trials each. In each trial,
participants were required to make a category judgment for a given
stimulus and received auditory feedback as training signal. Classification
accuracy reached 89.4% after five training sessions, and 95.3% after
training was completed in session 22 (Fig. 5). At the same time, reaction
times continued to decrease with training (from 679 ms in session five
to 538 ms in session 22, p < 0.01 paired t-test). Thus, although high clas-
sification performance was reached already after five training sessions,
the behavioral data indicate continued improvements over the whole
training period.

Behavior during the delayed match-to-category task

The electrophysiological correlates of category effects were estimat-
ed using an adaptation paradigm in which subjects performed a delayed
match-to-category task (Fig. 2a). During the baseline session, and there-
fore prior to category training, the DMC performance of our subjects did
not differ significantly from chance (49% accuracy, p = 0.128, t-test
against a chance-level of 50%). This demonstrates that our artificial
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Fig. 5. Effects of training on performance and reaction times. Subjects received auditory
feedback as a training signal, but no explicit information about the underlying feature
space or category structure. Recognition performance and reaction times improved until
session 22, illustrating continued training effects. Error bars depict SEM.

category structure is not an inherent property of the stimulus space.
With training, DMC performance increased to 66.2% in session five
and 76.0% in session 22 (Fig. S2). A repeated measures ANOVA (with
session (baseline, five, 22) and category membership (internal, exter-
nal) as factors) revealed a significant main effect of session (p < 0.01,
all pairwise comparisons are significant at p < 0.01, t-test, Bonferroni
corrected), but no main effect of category membership (p > 0.05) and
no significant interaction (p > 0.05). Thus, although there was an overall
increase in task performance with training, there was no significant dif-
ference in the performance of the category-internal and category-
external trials indicating that the task was equally demanding in trials
of both conditions. Effects of condition difficulty can therefore not ex-
plain the categorical effects observed.

The accuracy in the DMC task was lower than expected from the
high training performance (95% training accuracy predicts around 90%
accuracy for two consecutive decisions). This is in line with observations
by Helie and Ashby (2012), who observed sub-optimal DMC performance
even for comparably simple one-dimensional category boundaries. Multi-
ple reasons can account for this difference. First, a successful DMC trial re-
quires, in addition to the correct classification of both stimuli, successful
working memory encoding and retrieval, a successful category compari-
son, and a successful match to the correct motor response. Moreover,
the electromagnetic shielding required for the MEG measurements re-
quired the use of a back-projected display with decreased contrast com-
pared to the training monitor. Most importantly, our participants had
considerably less experience with the structure of the DMC task, com-
pared to the excessive amount of trials in the training paradigm.

Training-induced category effects in visual responses (MEG data)

To test for category effects in the visually evoked responses, we
compared the magnetic fields evoked by the second stimulus in the
category-internal and category-external adaptation trials in the MEG
adaptation paradigm, while controlling the low-level stimulus proper-
ties of the two conditions (Fig. 2b). This indirectly tests for category
selectivity, as differences between these two conditions will only be de-
tectable if category-information is encoded in the underlying cortical
activity. Importantly, adaptation paradigms were previously shown to
result in both, effects of repetiton suppression as well as repetition
enhancement (Krekelberg et al., 2006; Segaert et al., 2013), depend-
ing on stimulus timing (James and Gauthier, 2006), effect latency
(Marinkovic et al., 2003; Petit et al., 2006), and region of interest
(Zago et al., 2005).
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For analyses of visually evoked responses, we employed a spatio-
temporal projection approach that allowed us to focus our analyses on
adaptation-based effects, and an unconstrained cluster-based analysis
for effects that are not due to adaptation.

Focusing on adaptation-based effects first, we projected the evoked
fields in response to the second stimulus onto the adaptor response,
and thereby created activity traces for each session, subject and condi-
tion (category-external and category-internal). We then performed
a paired t-test at every time-point to test for differences between
category-external and category-internal conditions (positive t-values

indicate a larger response for category-external trials). This provided
us with temporal candidate clusters that exhibit significant category ef-
fects for every session. To ensure that the observed category effects
were indeed the result of category training, it had to be shown that cat-
egory effects were significantly larger post-training as compared to the
baseline session. As a final step, we therefore estimated the effect sizes
and confidence intervals of the training interaction for each temporal
candidate cluster (Bonferroni corrected at the cluster level, thereby con-
trolling for multiple comparisons). Only temporal clusters surviving this
rigorous control will be reported in the following. The clusters reported
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Fig. 6. Training-induced MEG category effects across time. The traces in each panel represent the adaptation-based t-statistics across time, as obtained from the spatiotemporal projection
method, comparing category-internal and category-external trials. Candidate temporal windows during which visually evoked responses showed significant category effects and a
significant training interaction are shaded in dark colors. Candidate windows exhibiting no significant training effects are marked in light gray. Together with traces of t-statistics, each
panel shows the underlying effect topographies and training interactions (i.e. effect difference between baseline and post-training) where applicable. (a) During the baseline session,
no significant category effects could be found. (b) After five training sessions, the first significant training-induced window of category selectivity is present from 275 to 293 ms.
(c) After extended category training in 22 sessions, the earliest training-induced category effects are present from 113 to 140 ms. Additional clusters of significant training-induced

category effects were found between 171 and 175 ms and 220-233 ms.
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will not only exhibit significant category effects, but also show signifi-
cantly stronger category effects compared to baseline, indicating that
the seen category effects are the result of category training.

We first analyzed the data from the baseline session. Here, we found
no significant category effects (Fig. 6a), confirming that the category
structures used for training were not an inherent property of the used
stimulus space. We then analyzed the data of the two post-training ses-
sions five and 22, testing for category effects and training interactions.
After five training sessions, the earliest significant, training-induced cat-
egory effects were evident between 275 and 293 ms (Fig. 6b, Fig. S3a).
With developing category expertise, however, a temporal shift in cate-
gory effects was observed. After 22 training sessions, the earliest cluster
exhibiting significant training effects occurred already after 113 ms
(lasting from 113 to 140 ms). Additional time-windows of significant
category effects were found between 171 and 175 ms and between
220 and 233 ms (Fig. 6¢, Fig. S3b). The corresponding template and ef-
fect topographies are shown in Figs. 4 and 6, respectively (individual
sensor-traces are provided in Fig. S4). Importantly, the earliest cluster
found in session 22 (113 to 140 ms) is not only significantly different
to the baseline session, indicating an overall training effect, but also
significantly larger compared to session five (Clgs = [—8.47 » 10~ 1%,
—1.55 » 10~ '3]). The latter indicates that the extensive training
between sessions five and 22 lead to the temporal shift in category
effects. The observed speed-up of more than 160 ms from session five
to 22 is remarkable, as our subjects already categorized the stimuli at
about 90% accuracy during training session five. Moreover, it is compa-
rable to the observed decrease in reaction times of around 140 ms from
training session five to 22.

As a necessary result of the close control of low-level feature dif-
ferences (same stimulus-space distance and direction for category-
external and category-internal trials), stimuli close to the category
boundary were shown more frequently in the DMC task. Based on
this, it could be argued that effects of long-term adaptation might spe-
cifically affect category external trials, thereby contributing to the
early category-effects observed in session 22. Speaking against this pos-
sibility we found no significant differences during the baseline session.
Furthermore, we report only clusters exhibiting both, significant catego-
ry effects and training interactions to ensure that the effects reported
are indeed the results of category training.

Following adaptation-based effects, we tested whether category-
specific effects exist that are not due to adaptation (Fig. 3). Based on
the residual data, i.e. the parts of the evoked fields that cannot be
explained based on the adaptor response, we compared category-
internal and category-external conditions, while correcting for multiple
comparisons using a nonparametric cluster-based permutation test.
This analysis revealed no significant effects of category selectivity (all
cluster p > 0.3, residual effect topographies shown in Fig. S5). This high-
lights the successful balance of motor-response mapping across condi-
tions and indicates that, in the current setup, category-selectivity was
only observed adaptation-based.

Relation of physiological category effects to behavior

To test whether the observed adaptation-based category effects
were behaviorally relevant, we compared the category effect sizes for
successful and erroneous trials during the delayed match-to-category
task. Again, we estimated the effect sizes and confidence intervals,
while Bonferroni correcting for multiple comparisons at the cluster
level. This analysis revealed significant differences for the earliest
cluster in session 22, indicating the behavioral relevance of the effect.
No other cluster in session 22 and five exhibited significant behavioral
effects. Considering the absence of significant differences for session
five, it should be noted that behavioral errors in the delayed match-to-
category task can have various origins. Apart from the variability in
the category signal, which is of interest here, they include subjects' inat-
tentiveness, errors in working memory and an incorrect mapping of the

perceptual decision to the appropriate behavioral response. These addi-
tional sources of error significantly complicate the search for behavioral
relevance, as they all do not predict differences in category-selectivity.
Moreover, it is possible that effects of behavioral relevance occurred at
an even later point, extending beyond the 300 ms analyzed here.

Source analyses

Following the analyses in sensor space, we tested whether the tem-
poral shift in category selectivity observed between session five (275-
293 ms) and session 22 (113-140 ms) is due to altered neuronal pro-
cessing in the same cortical areas, or whether different sets cortical
areas are activated during these two time windows of interest. To this
end, we computed a standardized low resolution brain electromagnetic
tomography (sLORETA) (Pascual-Marqui, 2002) on the data of the
adaptor stimulus, which underlies the observed category effects (see
Materials and Methods for details). We estimated the average source
activations during the two time-windows of interest and tested for sig-
nificant differences based on a t-statistic, while controlling for multiple
comparisons using a nonparametric cluster-based permutation test
(Maris and Oostenveld, 2007) on the cortical surface. This analysis re-
vealed that the previously shown temporal shift in category selectivity
was accompanied by an anterior-to-posterior shift of cortical activation
(Fig. 7, positive t-values indicate a stronger activation in the early time-
window observed in session 22). Although the source distributions
exhibited considerable overlap, among others in parietal regions (see
Fig. S6 for source activations of all clusters compared to baseline), the
time-window of training-induced category effects in session five
showed a significantly stronger activation in the ventrolateral and ven-
tromedial parts of the PFC. In contrast, the cortical activation during the
earlier time-window of category selectivity in session 22 exhibited sig-
nificantly stronger activity in more posterior regions, including the
occipitotemporal cortex. All results were reproduced in a separate
source localization analysis based on dynamical statistical parametric
mapping, dSPM (Dale et al.,, 2000) instead of SLORETA (Fig. S7).

As stated above, the source analysis approach taken here specifically
focuses on time-points at which adaptation-effects were observed.
Using the adaptor response as basis, it highlights sources that are differ-
entially activated at the two earliest significant timepoints in sessions 5
and 22. This assumes that the respective effects observed are the result
of altered activity in the strongest sources. This is not necessarily true, as
the projection approach can yield significant results that are driven by
weaker sources and sensor-patterns. In the current case, however, this
concern is not warranted, as the effect topographies nicely match the to-
pographies of the adaptor stimulus (Fig. S4). Moreover, the fact that no
category-effects were observed in the residual activity indicates that the
localized sources are the sole contributor to category selectivity in the
current data.

Discussion

Previous work on naturally occurring categories has demonstrated
that category information can be rapidly extracted from visually pre-
sented objects. It remained unclear, however, how the visual system
copes with the challenge to reach such rapid recognition speeds while
at the same time allowing for sufficient plasticity to encompass the
fast learning of entirely new categories. Are the same neuronal mecha-
nisms and structures involved in recognizing re-occurring and newly
learned categories, or are they different? And, if they are different, are
novel categories implemented differently with prolonged experience?
Here we investigated these issues by extensively training nine subjects
to categorize two artificial visual categories. During training, we record-
ed MEG data in a rapid event-related adaptation paradigm to investigate
the emergence of category selectivity in visually evoked responses.
Additionally, MEG data were recorded prior to category training to
serve as a baseline. Using a novel data projection approach, which
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Fig. 7. Source localization results. Source activations of the earliest clusters of category selectivity in sessions five and 22 were contrasted. Shown are uncorrected t-values with a cutoff at
p < 0.05. Blue regions show larger activity during the category-selective time-window in session five, red regions show larger activity in the early category-cluster in session 22. A white
border highlights clusters after controlling for multiple comparisons (cluster-based permutation test).

allowed us to separate adaptation-based and non-adaptation effects, we
demonstrate the emergence and, following this, a temporal shift in cat-
egory selectivity. The data recorded in the baseline session did not ex-
hibit any category effects, indicating successful control for low-level
stimulus properties. After five training sessions, the earliest training-
induced category effects were found around 280 ms of processing.
With extensive training in 22 sessions, we observed a temporal shift
in category selectivity. The first significant differences were now
found about 160 ms earlier, between 113 and 140 ms. We then investi-
gated whether the temporal shift in category selectivity was accompanied
by changes in the spatial pattern of the underlying cortical activity. We
compared the source activations during the two earliest temporal clusters
of sessions five and 22 and found a significant anterior-to-posterior shift.
While the cortical activity during the late category effects in session
five showed stronger signals in PFC, the early time-window of cate-
gory selectivity in session 22 exhibited an increased activation in
occipitotemporal regions.

An interesting aspect of the results is that temporally late effects in
session five and 22 exhibit positive t-values, suggesting a decreased re-
sponse for category-internal compared to category-external trials and
therefore repetition suppression. The earliest effect observed, cluster
one in session 22, however, exhibits a reverse effect, indicating effects
of repetition enhancement. This finding is in line with previous EEG ad-
aptation experiments that demonstrated early enhancement, but late
suppression effects (Marinkovic et al., 2003; Petit et al.,, 2006), and con-
tributes to an ongoing debate about the mechanisms underlying differ-
ential repetition effects in electrophysiology and neuroimaging (James
and Gauthier, 2006; Krekelberg et al., 2006; Segaert et al., 2013).

Our finding of an early cluster of category selectivity, starting at
113 ms and lasting until 140 ms, is fully compatible with previous stud-
ies of natural categories in macaque and human. In the macaque, Sugase
et al. (1999) recorded from inferotemporal cortex (IT) and observed a
peak in category information after only 117 ms of processing. In line
with this, Hung et al. (2005) demonstrated that relatively small num-
bers of randomly selected neurons in IT allow for reliable category
decoding, peaking 125 ms after stimulus onset. Interestingly, the au-
thors also show decoding of low-level properties such as size and posi-
tion of an object, arguing for residual retinotopic information in the
neuronal response. This emphasizes the necessity to control for low-
level stimulus properties and underlines the benefits of baseline mea-
surements in category training. Finally, Freedman et al. (2003) applied
areceiver operator characteristic approach to recordings from macaque
IT and PFC. They showed that IT cells exhibited category selectivity after
127 ms. In humans, electrocorticographic recordings provided direct
evidence that natural categories can successfully be decoded at a mean
latency of 115 ms (Liu et al., 2009). Remarkably, decoding was possible

based on single trials, allowing for generalization across rotation and
changes in scale. In line with this, MEG recordings of human subjects pro-
vided evidence that visually evoked responses of houses and faces can be
separated already at the time of the M100 component (Liu et al., 2002). In
the same study, a positive correlation of response amplitude and catego-
rization performance was shown, indicating the behavioral relevance of
the early category signals. Using a multivariate decoding approach,
Carlson et al. (2011) showed that it is possible to differentiate two visual
categories (faces and cars) after 135 ms of processing, even if the retinal
locations of trained and tested stimuli were different. Similar results
were later obtained using a wider range of categories (Carlson et al.,
2013). Extending this approach, Cichy et al. (2014) performed a tempo-
rally fine-grained representational similarity analysis based on 92 object
images and demonstrated successful decoding of different types of cate-
gory selectivity at approximately the same latency. The authors further-
more showed a correlation between the brain responses in macaque
and human, providing further evidence for a common representational
space (Kriegeskorte et al., 2008). These results of early category selectivity
were extended to a more natural, cluttered stimulus set contrasting faces
to other stimulus categories (Cauchoix et al.,, 2014). Finally, electrooculog-
raphy (EOG) data provided by Kirchner and Thorpe (2006) suggest that
category information is present and behaviorally relevant after only
120 ms of processing. However, it should be noted that all of the studies
mentioned above either investigated neuronal responses to naturally oc-
curring categories or did not include a pre-training baseline. Apart from
the inherent challenges to differentiate category selectivity from system-
atic differences in the low-level statistics (Crouzet and Thorpe, 2011;
Rossion and Caharel, 2011; Thierry et al., 2007; VanRullen, 2011;
Wichmann et al,, 2010), these setups do not allow for an investigation
of emerging category selectivity with increasing category experience,
which is the focus of the current study.

Overall, the neuronal mechanisms underlying the categorization of
visual input have been in the focus of a lively debate over the recent
years. A prominent view centers around the idea that category informa-
tion is extracted by PFC (Antzoulatos and Miller, 2011; Cromer et al.,
2010; Roy et al., 2010; Serre et al., 2007). Accordingly, neuronal selectiv-
ity in temporal regions is seen as merely providing a sufficiently com-
plex vocabulary from which the category information can be flexibly
read out. This view is consistent with the predictions of the two-stage
model of perceptual category learning (Riesenhuber and Poggio,
2002), which hypothesized that neurons in IT obtain sharper tuning to
re-occurring stimulus features, while regions in frontal cortex learn to
associate these features with the corresponding category membership.
In humans, experimental evidence supporting such division of labor
was provided by Jiang et al. (2007). They showed that category training
can lead to an increased shape selectivity in ventral areas whereas
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category selectivity was found only in the lateral PFC (but see
Minamimoto et al., 2010). Moreover, there is evidence for enhanced
shape selectivity in ventral areas in human and macaque (Freedman
et al., 2006; Sigala and Logothetis, 2002; van der Linden et al., 2013;
van der Linden et al., 2010). Nevertheless, the large body of evidence
for rapid category selectivity in IT, as reviewed above, supports a
contrasting view according to which category information might al-
ready be extracted at the level of the temporal lobe (DiCarlo et al.,
2012; Liu et al., 2013; Mur et al., 2012). Closely mirroring this con-
troversy, different labs have studied the cortical representations of
spatial and motion-related categories in the parietal and prefrontal
cortex, arriving at opposite conclusions. Whereas some observed
stronger and earlier category signals in prefrontal compared to pari-
etal cortex (Crowe et al., 2013; Goodwin and Blackman, 2012),
others reported the reverse: earlier category-selective signals in pa-
rietal cortex preceding prefrontal category selectivity (Fitzgerald
et al., 2012; Swaminathan and Freedman, 2012). Providing a poten-
tially unifying solution to these controversies, we have demonstrat-
ed here that prolonged category training can lead to a temporal shift
in category selectivity, which is accompanied by an anterior-to-
posterior shift in cortical activity. These data provide a clue as to
how the brain could balance the need for robust and fast recognition
of re-occurring categories while still allowing for considerable flex-
ibility and rapid plasticity. Selectivity for novel categories relies
more heavily on PFC and, as indicated by the long latency of the ob-
served effect, potentially recurrent processing. Sufficient expertise
with the categories, however, leads to changes in the cortical imple-
mentation of the trained categories, thereby allowing for a substan-
tial speedup in processing times and emphasizing cortical processes
in occipitotemporal regions.

A comparable view was recently described by Seger and Miller
(2010) who proposed that the brain might simultaneously implement
fast and slow learning processes. Fast learning provides multiple advan-
tages, such as increased flexibility and rapid adjustments, but at the cost
of an increased risk of erroneous classification. Slow learning, on the
other hand, is less error-prone but at the cost of extended training re-
quirements. In line with this suggestion, Helie et al. (2010) trained par-
ticipants in a rule-based categorization task and demonstrated an initial
transition from subcortical to cortical areas, including PFC, and a second
transition towards the premotor cortex with emerging automaticity.
The current setup, using MEG, is not particularly suited to resolve sub-
cortical activity. However, it is possible that a similar transition from
subcortical to cortical areas also occurred in our participants during
initial category training, potentially even earlier than our first
post-training MEG recording. The question of the respective contri-
bution of subcortical and cortical regions in category learning was
recently addressed in the macaque (Antzoulatos and Miller, 2014;
Antzoulatos and Miller, 2011; Muhammad et al., 2006), suggesting
that the striatum is indeed involved during initial category learning,
potentially entraining prefrontal circuitry.

In line with this suggested learning transition, our results provide a
potential explanation as to why some previous studies did not see
(early) category selectivity in temporal areas after category training
(Gillebert et al., 2009; Jiang et al., 2007; Li et al., 2007; Scholl et al.,
2014). Apart from many differences between these experiments and
our study, our data suggest that the extent of training is a decisive factor.
Comparably short training times might only reveal rather late category
selectivity in frontal regions, as observed in session five here, whereas
prolonged training is required for early occipitotemporal effects. Anoth-
er important difference is given by the type of category space used dur-
ing training. Using psychophysical measurements Folstein et al. (2012a)
demonstrated that factorial, but not blended morphspaces, lead to an
enhanced discrimnability of category-relevant feature dimensions, im-
plying that studies using the latter (Gillebert et al., 2009; Jiang
et al., 2007; Scholl et al., 2014; van der Linden et al., 2010), were
less likely to observe category-selectivity in visual areas. This

suggestion was corroborated by a follow-up fMRI study in which the au-
thors demonstrated robust category signals in visual areas (see Folstein
et al., 2015 for a review; Folstein et al., 2012b). In line with such evidence
for category-selectivity in visual areas, effects of expertise have been dem-
onstrated in the FFA (Gauthier et al., 2000), and the N170 ERP component
(Tanaka and Curran, 2001).

By contrasting correct and incorrect responses, we demonstrated
significant behavioral relevance of the early category effects starting at
113 ms in session 22. It has to be noted, however, that the time-points
of category selectivity observed in sessions five and 22 do not necessar-
ily mark the end point of the perceptual decision process. Successful
performance in the DMC task requires the successful completion of ad-
ditional processing steps, such as the successful comparison of the two
shown categories and the mapping of the perceptual decision to the ap-
propriate motor response. Moreover, effects of perceptual certainty
(Philiastides and Sajda, 2006) and ongoing evidence accumulation
(Donner et al., 2009) can be expected to play a vital role in the percep-
tual decision process.

While further experiments are required to fully disentangle the con-
tribution of these different factors, we have shown here that the brain is
capable of extracting visual categories based on two different modes.
Novel categories are recognized late, involving recurrent processing
and increased activity in PFC. This pattern of results is consistent with
a re-labeling of existing visual features, which would allow the system
to flexibly learn new categories and to quickly adjust to changing
task-demands (Mckee et al., 2014). Extended category experience,
however, leads to a significant speed-up in category selectivity, accom-
panied by increased activity in occipitotemporal cortex. This suggests
that re-occurring categories are processed differently to allow for
quick and reliable recognition. Taken together, our results suggest that
the brain balances plasticity for acquisition of new and efficiency in pro-
cessing of known categories by relying on different networks.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2016.03.066.
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