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Maximizing Information Transfer in
SSVEP-Based Brain–Computer Interfaces

Malte Sengelmann∗, Andreas K. Engel, and Alexander Maye

Abstract—Compared to the different brain signals used
in brain–computer interface (BCI) paradigms, the steady-
state visually evoked potential (SSVEP) features a high sig-
nal to noise ratio, enabling reliable and fast classification of
neural activity patterns without extensive training require-
ments. In this paper, we present methods to further increase
the information transfer rates (ITRs) of SSVEP-based BCIs.
Starting with stimulus parameter optimizations methods,
we develop an improved approach for the use of Canonical
correlation analysis and analyze properties of the SSVEP
when the user fixates a target and during transitions be-
tween targets. These transitions show a negative effect on
the system’s ITR which we trace back to delays and dead
times of the SSVEP. Using two classifier types adapted to
continuous and transient SSVEPs and two control modes
(fast feedback and fast input), we present a simulated online
BCI implementation which addresses the challenges intro-
duced by transient SSVEPs. The resulting system reaches
an average ITR of 181 Bits/min and peak ITR values of up to
295 Bits/min for individual users.

Index Terms—Canonical correlation analysis with par-
tially fixed spatial filter (CCAFSF), diagonal quadratic dis-
criminant analysis (DQDA), standardized mean of a contrast
variable (SMCV).

I. INTRODUCTION

S TEADY-STATE visually evoked potentials (SSVEPs) rep-
resent one of the most investigated and robust paradigms

for brain–computer interfaces (BCIs). It exploits the effect that
directing overt or covert [1] attention to flickering visual stimuli
enhances electrical potentials over the visual cortex evoked at
the flicker frequency. Tagging visual stimuli by different fre-
quencies, phases, or temporal patterns of visual flicker and clas-
sifying the respective features in the recorded brain signal thus
allows to decode to which of the stimuli the attention of the user
is directed. Depending on the coding dimension, SSVEP BCIs
can be categorized as time-division multiple access (TDMA),
frequency- (FDMA), code- (CDMA), or space-division mul-
tiple access (SDMA) SSVEP BCI [2]. The usability, reliabil-
ity, and speed of an SSVEP BCI are mainly determined by
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the parameters of the stimulation as well as the properties of
the classification method. Stimulus parameters comprise color
[3], contrast [4], duty cycle [5], movement [6], [7], stimula-
tion frequencies [8], as well as different wave forms [9], [10].
Classification accuracy has been increased using different fil-
ter and feature extraction techniques like fast Fourier transform
(FFT) [11], common spatial pattern [12], similarity of back-
ground [13], canonical correlation analysis (CCA) [14], filter
bank CCA (FBCCA) [15], multichannel CCA [16], or joint
frequency-phase modulation (JFPM) [17].

The currently fastest SSVEP BCIs achieve average infor-
mation transfer rates (ITRs) between 108 and 267 Bits/min
([9], [15]–[19]). Most recent improvements to SSVEP detection
([15]–[17]) center around optimizations of the standard CCA
approach [14]. Chen et al. [15] (151.18 Bits/min) improved
the reference signal used in [14] by extracting the indepen-
dent information embedded in the harmonics of the SSVEP
more efficiently via FBCCA. Nakanishi et al. [16] (166.91
Bits/min) trained the reference signals from electroencephalo-
gram (EEG) data and improved the efficiency of the spatial
filter component of the CCA by simultaneously projecting onto
multiple spatial filters calculated from the trained reference,
test, and ideal sinusoid signals. Recently, Chen et al. [17]
adopted parts of the analysis in [16] and added JFPM stim-
ulus encoding which considerably improved the ITRs achiev-
able by modern SSVEP BCI (from 166.91 Bits/min [16] to 267
Bits/min). The JFPM stimulus design aims at efficiently decod-
ing a large number of frequency targets in a narrow frequency
band (steps of 0.2Hz in [17]). In JFPM, the contrast between
targets is maximized by equally spaced phases between adjacent
frequencies.

The aim of our study was to explore the limits of the ITR of
FDMA SSVEP BCIs and to approach this limit by a combined
optimization of stimulation and classification methods. To this
end, we split the system’s signal processing pathway into its
main components and analyzed those separately using ideal-
ized and simplified test setups. This investigation revealed their
individual properties and performance optima.

On the methodological side, our optimization approach com-
prised the construction of a real time capable, high-precision
stimulation hardware, an improved application of the CCA, and
a quantification of the ITR gain of a new fast input (FI) mode
in comparison to the conventional fast feedback (FF) mode of
existing FDMA SSVEP BCIs.

These improvements were complemented at the subject
level by optimizing the stimulation frequencies and feature
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extraction methods for each user, determining the corresponding
upper limit of the ITR, analyzing the different properties of the
continuous and transient SSVEP, and deriving corresponding
signal filters.

Recent SSVEP BCI implementations ([9], [15], [16], [18],
[19]) usually operate in closed loop (proposed by Yuan et al.
[20]) FF mode and do not consider the hard- and software de-
lays of the setup. We show that ITR measurements based on
an FF mode are biased by those delays and thus not directly
comparable without quantification of the delays.

Combining the results led to a flexible BCI setup which fea-
tures ITR optimization for both modes of operation (FI and FF)
and achieves a mean ITR of 181 Bits/min and a peak ITR of
295 Bits/min measured at the output of the Level 1 BCI control
module [24] in a simulated online experiment without feedback.

II. MAXIMIZING THE ITR

The ITR is a measure for the amount of information trans-
ferred per time over an unreliable transmission line. It reflects a
tradeoff between a cost resulting from the time required to trans-
mit a single character and a gain represented by the amount of
information a character holds and the probability to correctly
transmit and receive it. Shannon and Weaver [21] expressed the
ITR by (1), where B is the bit rate in bits per character, N is
the number of characters, TP is the classification accuracy, and
ΔtITR is the time required to transmit each character

B = ld (N) + TP ld(TP)

+ (1 − TP) ld (
1 − TP
N − 1

)

ITR = B∗(60/ΔtITR). (1)

The three general options to increase the ITR are to decrease
the time required to transmit each character, to increase the in-
formation each character holds, and to increase the recognition
accuracy of each received character. However, these parame-
ters, which need to be optimized in order to achieve maximum
performance, are not independent.

A. Optimizing the Stimulation Parameters

From (1), it follows that the ITR grows with the number of
characters or target classes N . The logarithmic relation suggests
that it is not necessary to maximize N at all costs, but that still
a reasonably large number of classes should be employed. A
relatively simple way of increasing the number of targets in
FDMA BCIs is to use the phase of the SSVEP in addition to the
frequency dimension [22]. The phase can encode information
independently from the frequency. This feature can be used
to multiply the number of available classes without impairing
the frequency classification accuracy. However, technically, this
requires synchronization between the stimulation hardware and
the EEG signal recording.

A second approach to maximize the ITR by optimizing
stimulation parameters is to enhance the classification accu-
racy TP by maximizing the signal to noise ratio (SNR) of the
SSVEP. As the frequency dependence of the SSVEP response is

subject-specific [8], the frequencies for encoding different target
classes should be selected carefully. This also explains why the
number of classes is hard to maximize: the more frequencies are
employed to encode more classes, the lower the average SNR
is ; thus, there is an optimum number of frequency classes per
subject. In this study, we optimized the stimulation frequencies
for each subject but used a fixed number of classes.

B. Optimizing the Signal Processing

The attempt to maximize the SNR of the SSVEPs by optimiz-
ing stimulation parameters was paralleled by a corresponding
effort in the development of the signal processing pipeline.

The first processing step consists of a single bandpass filter
which selects a band containing the first and second harmonics
of all SSVEP frequencies used.

As SSVEP responses are known to be largest over the visual
cortex, only the posterior 14 of the 32 EEG channels were
used. To this end, we employed a spatial filter based on a two-
step application of the CCA, which we call CCA with partially
fixed spatial filter (CCAFSF). Opposed to the standard CCA
approach [14], which calculates new spatial filters based on the
limited data each short live trial offers, we instead predetermined
the spatial filters on large offline data and injected the spatial
information, which we consider to be time independent, into the
live feature extraction process.

The majority of classification methods employed for SSVEP
BCIs assume that the data to be classified result from the subject
gazing at any of the targets. A fixed number of samples is col-
lected (typically lasting a few seconds), classified, and feedback
about the result is given to the subject. Then, the cycle starts
over by selecting the next target. We observed that transitory in-
tervals (TIs) introduced by switching gaze from one target to the
next result in noninformative periods in time which have a neg-
ative impact on the TP if they are included in the classification
process. Thus, the length of the window of analysis (l) and the
latency of the window of analysis with respect to the trial start
(Δt) are critical parameters. A previous study [14] has shown
that classification accuracy improves with the increasing win-
dow length. Longer input time requirements, however, also have
a detrimental effect on the ITR [by increasing ΔtITR in (1)]. Our
aim is therefore to simultaneously optimize the time available
for each target selection L, the window of analysis length l, and
the offset of the window of analysis Δt. This optimization is
performed for two classifier types (FE and TI), trained on data
collected during both TIs as well as during periods of the fully
entrained (FE) SSVEP.

C. Optimizing the Mode of Operation

While performing continuous input to a SSVEP BCI the time
the subject needs to select the next target, apparent latency of the
SSVEP ([17], [23]), as well as the acquisition and processing of
EEG data produce delays in the BCI’s closed control loop (input,
classification, cue for the next input). Due to these delays, each
classification event is followed by a period of data containing
the already classified SSVEP. This period is unavailable for
classification of the last target and uninformative for the next.
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Fig. 1. Comparison of the temporal structure of FI and FF mode. Issu-
ing the cue to switch targets results in a delayed change of the SSVEP.
By issuing the cue early and independent from classification (FI mode),
information in the “Delay” interval becomes available for classification.

The period directly adds to the loop’s roundtrip time, decreases
the time slots available for subject to system transmission, and
represents a mayor negative impact on the system’s ITR. We call
the classical mode of the BCI operation, in which classification
result feedback and cue to select the next target are represented
by a singular event, FF mode (see Fig. 1, top panel), as it enables
the subject to seemingly immediately react to the BCIs feedback.
In the meantime the classifier discards uninformative, delayed
data, while it waits for the next input to occur (“Delay” period
in Fig. 1).

In anticipation of the delayed switch between SSVEP states,
the cue for the next target can be issued early and independent of
the classification and its feedback. By decoupling classification
from cue and accurately anticipating the delay, all available
time slots become available for subject-to-system transmission,
increasing the bandwidth utilization and thus ITR. In this FI
mode (see Fig. 1, bottom panel), however, the delays of the
roundtrip are not negated. Instead, they are relocated but only
relocated from the BCI‘s input (subject-to-system) to the BCIs
output (system-to-subject) information streams. Both FF and FI
mode are thus negatively affected by the delays of the system‘s
roundtrip. In the FI mode, the early cue allows to exploit all
available time slots for subject-to-system transmission at the
cost of delayed classification and thus delayed feedback of the
result. The FF mode allows to directly react to the classification
result of the very last input at the cost of a lower bandwidth
utilization and ITR.

Both FF and FI mode allow to react to feedback. In the FI
mode, however, the subject may react only to the second to last,
not the last input (or, depending on the proportion of the delays
and the time allocated for each input, even older inputs). The
correction of the second to last input was not tested here and
is considered both more difficult to operate and less intuitive
for the subject. Eventually, the preference for an FI or an FF
mode will depend on the requirements imposed by the BCI’s
application.

In order to separate cue from feedback in the FI mode, we
suggest to use an audio cue to pace the user selecting the next
target, like a metronome paces a musical performance. In this
schema, a continuous stream of input (like continuous typing on

a keyboard) is sent to the BCI and is answered with a delayed
but continuous stream of classification results (see Fig. 1).

In this study, the subjects did not receive classification re-
sult feedback. Instead, subjects only acted as driven by the
classification result (which was neutral to the classification re-
sult). In the FF mode, this cue was bound to the same timing
constraints (see above) as classification result feedback. The
final ITR estimation therefore does not incorporate the addi-
tional delays expected from the reaction to a false classification
result, but only represents the unidirectional subject-to-system
information stream at the output of the Level 1 classifier [24].

III. EXPERIMENTAL SETUP AND DATA ANALYSIS

A. Hardware

Visual stimulation was generated by an array of 16 RGB
LEDs, each with a conical diffusor lens of 3-cm diameter (visual
angle of 5◦) and calibrated to emit white light. Elements were
arranged on the 4 × 4 array with a grid distance of 6 cm (10◦

visual angle). To the left, the LED array was extended by an
additional column of four static fixation spots used as targets
for the no-control state. Rectangular signals with a duty cycle of
50% were used to drive the LEDs as well as the EEG amplifiers
trigger inputs. Sampling of the EEG and trigger signals as well
as activation of the LED stimulators was driven by the same
master clock. This is expected to minimize the SNR loss during
the frequency analysis caused by slight deviations between the
stimulation and sampling clocks.

A loudspeaker provided auditory cues to the subject. The cor-
responding trigger signal was recorded using a Schmitt trigger
connected to the coil of the electromagnet driving the loud-
speaker (see Fig. 2).

B. EEG Recording

Seven healthy subjects aged between 17 and 45 (mean 28
years) were seated upright in a relaxed position on a chair in
front of the LED array (distance 35 cm). EEG signals from the
14 electrodes closest to position Oz in the 10–20 system were
recorded with a BioSemi 32 ActiveTwo amplifier at 1024-Hz
sampling rate. The recording took place in a dimmed environ-
ment with some residual light coming from a static image on a
15-in TFT screen placed outside the field of view of the subject.

C. Experimental Conditions and Tasks

To determine the parameters that maximize the ITR, we
recorded data from four different experiments. Total recording
duration was about 130 min per subject. Subjects were offered
to take a break after each experiment. The first experiment was
used to determine the SSVEP signal strengths at different stim-
ulation frequencies and different feature extraction methods in
order to select the four frequencies and corresponding feature
extraction methods with the highest contrast. Data from the
second experiment consisted of prolonged exposition to each
of these four stimulation frequencies in four different phases
each. They were used to train “FE classifiers” on the FE SSVEP
and to determine one spatial filter per stimulus frequency. In
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Fig. 2. Schematic overview of the stimulation and recording hardware setup.

the third experiment, we introduced transitions between steady
states which occurred in fixed intervals of 3 s (triggered by
an audio cue). The data were used to train “TI classifiers”
for the time course of the SSVEP transitions and to estimate
optimal input rates to be recorded in the fourth experiment using
a heuristic. Using the fourth experiment‘s data, we fine-tuned
temporal parameters for feature extraction and determined the
ITR of the BCI under various modes of operation (FI or FF),
with or without the no-control state.

Experiment 1— Stimulus Parameter Optimization:
In the first experiment, subjects were asked to overtly attend
to each of the simultaneously presented targets on the LED
array in a given sequence. Data of L = 50 s continuous
exposure to each stimulus were recorded. After an optional
period of rest for which the subjects did not have any instruc-
tions, they proceeded to the next target until each of them
was attended once. The number of different stimulation fre-
quencies S was set to 16. Stimulation frequencies were de-
fined by their wavelengths T s as an integer multiple of EEG
samples. Furthermore, all wavelengths were restricted to four
times an integer number of EEG samples, enabling accurate
generation of four different phase angles per stimulation fre-
quency. The 16 stimulation frequencies used in this experi-
ment were 1024/[96 92 88 84 80 76 72 68 64 60 56 52 48 44
36 32] Hz.

Experiment 2— Spatial Filters and FE Data: The
second experiment introduced the no-control state and differ-
ent phases of the stimulation frequencies. The 16 LEDs plus
the four no-control state fixation spots were used as targets. The
targets were selected in the same way as described for the first
experiment. The LEDs were driven with S = 4 different fre-
quencies f̂1 ,f̂2 , . . . ,f̂S at four phase angles of 0◦, 90◦, 180◦,
and 270◦ each. Data of L = 50s continuous exposure to each
stimulus were recorded. The frequencies were selected to max-
imize the SSVEP detection accuracy of the respective subject
based on results of the first experiment. One spatial filter per
stimulation frequency was determined based on one partition

of the data (see below), while the remaining data were used as
training samples for the FE classifier.

Experiment 3— Temporal Filters and TI Data: The
third experiment used the same targets as the second experiment,
but gathered data of the transition between targets instead of pro-
longed exposition to each target. This experiment consisted of
four blocks, and each block consisted of four trials for each of
the 20 targets (16 LEDs plus 4 fixation spots) in randomized or-
der, with the constraint that the same target did not appear twice
in a row. This resulted in 80 transitions per block. Each block
was started by the subject via button press at his/her own dis-
cretion. The subject was instructed to switch gaze and attention
to the next target as soon as a short auditory beep was perceived
which was issued every L = 3 s and marked the beginning of
each trial. Feedback about the last classification result was not
given. In parallel to each currently attended target, the next tar-
get to be attended was visually indicated by changing its color
from white to red. The color switching occurred simultaneously
with the auditory cue. Using this cueing scheme, the subject
always overtly attended a white flicker as the current target and
covertly searched for a red flicker as the next. In the first trial,
when there was no previous indication of which target to fixate,
subjects were instructed to attend any of the white flicker stimuli.
This first trial was omitted from further analysis. The visual cue
for the four no-control state fixation spots was defined as none
of the 16 LEDs being red. Subjects could freely choose which
of the four spots to attend in this case.

Experiment 4— Measuring ITR: In the fourth experi-
ment, the time available for each input L was introduced as a
parameter. One session with the otherwise same procedure and
parameters as described for the third experiment (apart from L)
was recorded for each tested value of L. Values for L started
at the optimum predicted by the heuristic on data of the third
experiment and were gradually decreased and increased in steps
of 1/8 s to search for the FI mode ITR optimum. Some subjects
reported that shorter settings of L were “too fast” in which case
we stopped decreasing it.



SENGELMANN et al.: MAXIMIZING INFORMATION TRANSFER IN SSVEP-BASED BRAIN–COMPUTER INTERFACES 385

D. Signal Processing

1) Preprocessing: EEG data were processed with a finite
impulse response (FIR) minimum order equiripple bandpass
filter with −80dB attenuation in the stop bands and corner
frequencies at the lowest presented stimulus frequency minus 2
Hz, and the highest stimulus frequency times 2 plus 2 Hz. The
widths of the rising and falling slope of the filter were set to 5
Hz. This filter setting retained the first and second harmonics
of every stimulation frequency in the pass band. The filter was
restarted at the beginning of each block. All further processing
of the data after filtering was done on data windows with a
length l consisting of an integer number of bins with a fixed size
of 1/8 s each. Bins containing the FIR startup time (length of
the FIR kernel) were removed from further processing. Effected
trials at the beginning of each block were omitted.

2) Frequency Feature Extraction: We used CCA to
determine the maximal correlation of the EEG signal with sine
waves of the respective stimulation frequencies. In general, the
CCA finds the maximal correlation between two multidimen-
sional random variables in the matrices X (d1 -by-n) and Y
(d2-by-n), where n is the number of samples, and d1 and d2are
the number of variables or channels in X , respectively, Y . The
CCA determines two d1 -by-d and d2 -by-d spatial filter matri-
ces W x and W y , where d is the minimum of rank(X) and
rank(Y ), which constitute linear combinations of the chan-
nels in X and Y , respectively, such that the d-by-1 correlation
coefficients R between x (the n-by-d projection of X on W x)
and y (the n-by-d projection of Y on ) are maximized. These
projections are called canonical variants

x = XT Wx (2)

y = Y T Wy . (3)

In order to find the maximum r of the correlation coefficients
R, the CCA solves the following problem [14]:

r =
max

Wx,Wy
R (x, y) =

E
[
xT y

]

√
(E [xT x] E [yT y])

. (4)

In our case, X contained multiple channels of an EEG data
window of analysis of length l. The matrix Y was defined as a
reference signal of length l for the sine wave to be detected in X
by correlation. A set of reference signals Y s corresponding to
the stimulation frequencies fs yielded scalar feature values rs

for each frequency. They were combined in the feature vector
F used for classification

F =
(

r1 r2 . . . rS

)
. (5)

The reference signals Y s model the respective SSVEP re-
sponse by a linear combination of sine and cosine functions

Ys,h =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

sin (2π fs t)
cos (2π fs t)

. . .

. . .
sin (2π h fs t)
cos (2π h fs t)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (6)

Here, h is the number of harmonics h ∈ [1,2], i.e., Y s,1 con-
sists of one pair of sine and cosine functions approximating the
first harmonic of the SSVEP, and Y s,2 consists of an additional
pair of sinusoids in order to model the second harmonic as well.
By adjusting the weights in W y , the CCA is able to fit the phase
and the amplitude of the sinusoids in y to the data in x [compare
(7)]. The filter weights in W y thus constitute the basis of the
time dependent information required for the feature values

a sin (α) + b cos (α) = c sin (α + ϕ)

c =
√

a2 + b2 ; ϕ = tan−1
(a

b

)
. (7)

3) Spatial Filtering Using CCAFSF: The weights of
W x, however, contribute spatial filters for the EEG sensor space
information which we hypothesized to be time independent.
Instead of recalculating W x for each short live trial (as done
by the standard CCA [14]), W x can be precalculated with
increased precision by using large amounts of offline data. Once
determined, the spatial information can be injected into the live
process operating on short data windows without compromising
the BCIs input rates.

For each fs, we recorded (in Experiment 2) a single long FE
SSVEP trial X̂s. A first CCA was applied to each X̂s and the
corresponding Ŷ s to train the frequency specific spatial filters
Ŵ xs

. This also yielded x̂s and ŷs. In subsequent experiments,
short trials X were projected onto each Ŵ xs

, resulting in the
canonical variants x̃s

x̂s = X̂T
s Ŵxs

(8)

ŷs = Ŷ T
s Ŵys

(9)

x̃s = XT Ŵxs
. (10)

One feature value per fs was extracted using the frequency-
specific projection x̃s and the corresponding Y s as input to a
second standard CCA step. The resulting features were grouped
in F v for classification

Fv =
(

rv,1 rv,2 . . . rv ,S

)
. (11)

By using x̃s instead of X , the degree of freedom of the error
prone second CCA‘s spatial filter estimate was thus constrained
by the spatial information contained in Ŵ xs

. This successive
application of two standard CCAs [14] to precalculate time-
independent properties of the data (location of the SSVEP gen-
erating source), and separate them from time-dependent ones
(phase and amplitude of each fs) is called CCAFSF and is
depicted as a flowchart (see Fig. 3). CCAFSF is considered the
state-of-the-art approach for CCA SSVEP frequency feature ex-
traction increasing feature contrast and classification accuracy.

The channel numbers which yielded the maximum correlation
coefficient for each individual fs during spatial filter (Ŵ xs

)
training were stored as vector ĉs and used during phase feature
extraction

ĉs =
argmax

Ŵx̂s
, Ŵŷs

R̂s (x̂s , ŷs) . (12)
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Fig. 3. Schematic overview of CCAFSF spatial filter training (top) and
frequency feature extraction (bottom). For each frequency fs , a single
long trial X̂s and a reference signal Ŷs with a frequency specific, opti-

mized number of harmonics (h
def
= 1 for purposes of this example) was

used as input to a first CCA to train the frequency specific spatial fil-
ters Ŵxs . Depending on the hs used for the individual Ŷs , the resulting
Ŵxs consisted of either 2 (h = 1) or 4 (h = 2) spatial filter vectors
(depicted as plots of the topography). In the second step (bottom), all
Ŵxs were applied to each short live trial (of unknown frequency class)
before a second CCA was used to extract one feature value (rv ,s ) from
each frequency specific projection x̃s .

4) Phase Feature Extraction: Fourier coefficients for
each fs were computed by a standard FFT on a single- fre-
quency specific data channel. The real and imaginary parts of
the Fourier coefficients were combined in a phase feature vector
P s used for classification.

Let gs be a time-domain input data vector containing N
samples. For each fs, we define its wave length T s and the
maximum number of samples NFFT ,s to be used for the FFT
which result in a frequency-domain bin ks that closely matches
the desired frequency. Here, the use of the same clock signal
for the sampling and stimulus generation process allowed for an
exact match

Ts =
1
fs

;Nf f t,s =
[

N

Ts

]
Ts ; ks =

Nf f t,s

Ts

Gs =
1
N

Nf f t , s∑

n=0

gs (n) e
−2 i π k s ∗(n −1 )

N f f t , s

Ps =
(� (Gs) � (Gs)

)
. (13)

The first rising trigger edge of the four LEDs running at
0◦ phase was used as a phase reference per corresponding data

Fig. 4. Schematic overview of the first experiment.

window. Depending on the frequency of interest and the method
used for frequency feature extraction (CCA or CCAFSF), a
different data channel was used as input vector gs to the same
FFT (13). In the CCA case, we used the channel Oz as gs

for every frequency. In the CCAFSF case, we first projected
the sensor space data X on the frequency-specific spatial filter
matrix Ŵ xs

, which resulted in the projection Ŵ xs
(10). From

x̃s, we selected the single channel ĉs as input gs to the FFT
(13). The resulting phase feature vector was denoted P s in the
CCA case and P v,s in the CCAFSF case.

5) DQDA Classifier Cascade: Throughout all experi-
ments, trials were classified using the same cascade of two di-
agonal quadratic discriminant analysis (DQDA) classifiers. The
first one distinguished the control states from the no-control
state using the feature vectors F (CCA) or F v (CCAFSF). If
a control state was detected, the second classifier discriminated
between the four phase classes of the detected frequency using
the phase features P s (CCA) or P v,s (CCAFSF).

E. Parameter Optimization

1) Stimulation Frequency Optimization Using
SMCV: The standardized mean of a contrast variable (SMCV)
[25] method was applied to data of the first experiment to deter-
mine the optimal number of harmonics (1 or 2) to be used in the
CCA reference signals of each frequency and to find those four
stimulation frequencies [8] which maximize group difference
(see Fig. 4).

Let there be S random variables H1 ,H2 , . . . ,HS with the
mean values µ1 ,µ2 , . . . ,µS . A contrast variable C is defined
by

C =
S∑

i = 1

wiHi. (14)

where wi‘s are weights for the groups which satisfy

S∑

i = 1

wi = 0. (15)
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Fig. 5. Schematic overview of the second experiment.

The SMCV for C denoted by λ is defined [25] as

λ =
E (C)

stdev (C)
=

∑S
i=1 wiμi√

V ar
(∑S

i=1 wiHi

) . (16)

Larger differences in mean values and smaller variances of
each contrasted group result in larger λ values.

Trials were cut from each 50s data segment of the first ex-
periment as windows with a length l = 2 s and l − 1/8 s
overlap. For any one combination of the parameters frequency
and number of harmonics, we extracted features from all tri-
als using the corresponding CCA reference signal Y s,h. Fea-
ture values of those trials during which the current frequency
of interest was attended were grouped in H1 and weighted by
w1 = 1. Feature values of all other trials were grouped by their
respective attended frequency (H2 , . . . ,HS) and weighted by
w2 , . . . , wS = −1/ (S − 1) to satisfy (15). Repetition of
this process for all tested frequencies and number of harmonics
yielded one λs,h for each combination.

We first found the maximum λs,h among the number of har-
monics for each individual frequency and then determined the
four largest remaining λs,h across frequencies to maximize
group separability. The resulting four stimulation frequencies
and corresponding number of harmonics were considered as
optimal and used exclusively in all subsequent experiments.

In order to estimate the variance in the reported λs,h val-
ues, we repeatedly performed their calculation on randomized
partitions each containing only 90% of the data (delete-10%
jackknife).

2) Continuous SSVEP: In the second experiment, we
recorded continuous (50 s) exposition to the no-control state
targets and four stimulation frequencies in four phases each.
Data were used to train the spatial filters Ŵxs

for CCAFSF and
as training datasets for the “FE classifiers.” We also used the
data to report performance differences of CCA versus CCAFSF
(see Fig. 5).

Fig. 6. Schematic overview of the third experiment.

The first one-third of the 50 s exposition to each fs at 0◦

phase was used as X̂s to train the corresponding spatial filters
Ŵ xs

to be used in subsequent experiments.
The remaining two-third of data was cut to data windows of

length l = [1, 2, . . . , 16]/8 s with an overlap of l − 1/8 s.
Frequency and phase features were extracted by CCA and
CCAFSF from each data window. The features were grouped
by the feature extraction method and l. Each group defined an
FE classifier training set to be used in subsequent experiments.

In order to report performance differences between CCA and
CCAFSF, the features of each group were also classified by the
DQDA cascade. We separated each group in four nonoverlap-
ping sets and used them in all possible combinations as training
(two sets) and test (two sets). For each permutation of the sets,
we used 100 randomized partitions each containing 90% of
the training and test data (delete-10% jackknife). Virtual ITRs
(VITR) were calculated based on the resulting TP rates using (1)
and ΔtIT R = l. We call this ITR “virtual” because we defined
the time required to transmit each character ΔtIT R as the length
of data l used for classification instead of the time available for
each target selection L. The second experiment was specifically
designed to not contain any TIs and thus no switches between
targets. Consequently, there was no real transfer of information
in this experiment.

3) Transitions Between SSVEPs: The TI data from the
third experiment was used to train “TI classifiers” in analogy
to how the data from the second experiment was used to train
the FE classifiers, and to estimate the optimal time between
switching targets L for the fourth experiment (see Fig. 6).

The parameter Δt was introduced as the offset of the
right-side corner of each windows of analysis relative to
the audio trigger marking the beginning of each trial. Win-
dows of analysis were cut from each trial for each combina-
tion of the parameters l = [1, 2, . . . , 16]/8 s and Δt =
[1, 2, . . . , 48]/8 s. Features were extracted from each window
by CCAFSF and grouped by parameters values. Each group was
used as a training set for one TI classifier.
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Fig. 7. Schematic overview of the fourth experiment.

All groups were also classified by the FE classifiers trained
on the same parameter values (l, CCAFSF). To estimate the
variance of the TP, we used 100 iterations of repeated random
subsampling using 90% of the training FE and test TI data. Op-
timal parameters were determined by finding the ITR maximum
when using the above TP rates, ΔtIT R = L, and (1).

The time between switching targets L was thus far not con-
sidered as a parameter. Instead of recording and testing a wide
range of L values, we roughly approximated the ITR optimal
L for FI and FF mode based on the above L = 3 s data TP
rates. VITR values were determined for every combination of
the parameters l and Δt using (1), the above TP rates, and the
estimated minimum input time requirement for the respective
mode ( ΔtIT R = LF I for FI or ΔtIT R = LF F for the FF
mode). LF I and LF F were each modeled as functions of Δt
(see below). The LF I value associated with the VITR(l, Δt)
maximum was considered optimal and used as initial value for
L in the fourth experiment.

The classification in the FF mode and simultaneous issu-
ing of the audio cue at Δt resulted in lagged reception of the
corresponding audio trigger signal (162 ± 26 ms ceiled to
tlag = 2

8 s = 250 ms due to the resolution of the analysis
time bins). In the FF mode, the minimum required time between
switching targets while classifying at Δt was thus modeled as

LF F (Δt) = Δt+ tlag. (17)

In the FF mode, the interval of length tlag between classifi-
cation and the start of the next trial cannot be used effectively
for classification, but it adds to the time required for each input.

To access the information in this interval, classification and
cue were decoupled in time in the FI mode. We assumed that
the cue can be issued tlag earlier while still classifying with
comparable TP rates at Δt. Furthermore, the subject’s reac-
tion time to each cue signal was assumed to result in addi-
tional delays (switching of overt attention, latency of the visual
pathway [23]) of the SSVEP response which were estimated
at treact = 250 ms. Until switching occurred, the subject
would still maintain the last SSVEP state. The minimum target
selection time required in the FI mode was thus modeled as

LF I (Δt) = LF F (Δt) − treact − tlag

= Δt−treact. (18)

4) Application of the BCI: Based on the data from the
fourth experiment, we performed an exhaustive search in the
vicinity of the estimated optimal trial length LF I in order to
find subject-specific settings for L, l,Δt, and the type of clas-
sifier (FE or TI) which maximized the ITR of the simulated
online BCI system in the FI mode (see Fig. 7). Features ex-
tracted using a particular parameter combination (l,Δt) were
classified by those classifiers which had been trained on the ex-
act same parameter setting. For comparison, parameters were
also optimized for the FF mode. We did not, however, specifi-
cally vary L in the vicinity of LF F . Instead the data recorded
in the vicinity of LF I was used. Instead of performing online
classification of the fourth experiment, only software trigger
signals marking the point in time when the audio cue was issued
from software (when to classify offline) were written online.
Those trigger signals allowed to estimate the reported ITR per-
formance distributions offline by twofold cross-validation (100
repetitions).

IV. RESULTS

A. First Experiment—Stimulation Frequency
Optimization

Data from the first experiment were used to determine four
optimal subject specific stimulation frequencies fs and a corre-
sponding number of harmonics for the CCA reference signals
for each of them (summarized in Table I). The optimization was
based on the size of effect values λs,h calculated by SMCV.
Whereas, the study in [14] did not find a significant impact of
the number of harmonics h on the classification performance,
our data show that the SMCVs can be significantly increased
for most subjects and frequencies by including the second har-
monic. Using a mixed number of harmonics for the individual
frequencies were found to be optimal for two out of seven sub-
jects (cf., Table I).

B. Second Experiment—CCAFSF and FE State analysis

Data from the second experiment were obtained during pro-
longed exposition to each of the four stimulation frequencies
in four phases each. The resulting long FE data segments al-
lowed determination of CCAFSF spatial filters and training of
FE classifiers for simulated online classification of the fourth
experiment.
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TABLE I
SUBJECT STIMULATION PARAMETERS OVERVIEW

Fig. 8. VITR comparison of the CCA and CCAFSF algorithms on FE
data (no transitions between classes; no loss of bandwidth caused by
transitions) classified by FE classifiers over l for each subject (color
coded cf., Table I).

TABLE II
EFFECT OF CCAFSF ON FE DATA

We compared the efficiency of CCA and CCAFSF by ex-
tracting and classifying feature values from the FE using both
methods. The resulting VITRs show an improved average clas-
sification accuracy and lower variance (see Fig. 8) in all sub-
jects using CCAFSF. Classification of data from the FE SSVEP
containing no transitions between targets (no real transfer of
information; no loss of bandwidth caused by the transitions)
yielded VITRs of up to ∼ 1 kb/min. The respective maxima
represent optimal tradeoffs between accuracy and the length of
the window of analysis l. Other subjects seemed not to reach
a global maximum in the range of considered window lengths
(l = [0.125 . . . 1] s). Using CCA, some subjects exhibited a
nonmonotonic change of VITR with increasing l. Table II lists
the FE VITR maxima for the methods CCA and CCAFSF as
well as the relative improvement by CCAFSF for each subject
based on the data of Fig. 8.

Fig. 9. Mean classification accuracies (color coded) of the FE clas-
sifier applied to TI data over l and Δt for one exemplary subject (No.
7). Displayed are two consecutive trials (length L = 3s). Color shows
classification accuracies of the first trial. White boxes mark the first time
bin of the second trial. Black boxes mark the first offsets which do not
result in an overlap of the data window with the previous trial.

C. Third Experiment—Transitions Between SSVEPs

The third experiment added information about the SSVEPs
development in time by introducing transitions between the
steady states. The data were used to train TI classifiers for sim-
ulated online classification of the fourth experiment.

FE classifiers were tested on the TI data for different parame-
ter values of l and Δt. The resulting TP rates (see Fig. 9) reveal
a delayed start and end of the SSVEP w.r.t. the auditory cues.
The SSVEP responses were also shown to be shorter than the
exposition to the stimulus, suggesting the presence of a dead
time. A shallower rising than falling slope (over Δt) of the TP
rates indicated an initial period of SSVEP entrainment.

The L = 3s TI data were further used to approximate the
optimal trial length for FI and FF mode (LFI and LFF ) by
determining the VITR maximum over l and Δt. The VITRs
displayed in Fig. 10 were calculated based on the accuracies
shown in Fig. 9, using (1) and (18), as well as ΔtITR = LFI .
The data show that with increased input rates, small window
lengths, and early classification, higher ITRs can be expected
at the expense of accuracy and variability. Table III lists the
parameter values at which the individual VITR maxima were
located.

D. Fourth Experiment—Application of the BCI

The analysis of the fourth experiment used the information
of all previous experiments, added the time available for each
input L as a parameter, and optimized L, Δt, l, and the type of
classifier (TI or FE) by an exhaustive search for each subject.
The resulting data revealed a successful reduction of the broad
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Fig. 10. Mean VITR values (color coded) over l and Δt calculated
using the ITR (1), the classification accuracies shown in Fig. 9, and an
estimate for the minimum required input time which results in compa-
rable accuracies at each individual bin [(18) and ΔtITR = LFI ]. The
maximum VITR is located at Δt = 1.125 s and l = 0.375 s and corre-
sponds to an estimated optimal FI mode trial length of LFI = 0.875 s.

TABLE III
STIMULATION LENGTH HEURISTIC PARAMETERS

Fig. 11. Mean ITR over l and Δt for an exemplary subject (No. 7) using
the optimal trial length L = 625 ms and classifier (TI). Two consecutive
trials are displayed. Red outlines mark the time bin when the audio
cue for the second trial was issued from software. Green outlines mark
the reception of the audio cue trigger (for the first and second trial) by
software.

plateaus of high classification accuracy caused by suboptimal
parameter settings (see Fig. 9) to narrow peaks as illustrated
by the example inFig. 11. Operating the BCI continuously with
this optimal yet short time window required stable reaction times
from the subject.

Overlaying the ITR(l, Δt) in Fig. 11 with issuance (red rect-
angle) and reception (green rectangles) of the audio cue signal
revealed time dependencies of both modes (FI and FF). Due
to lags of the system (162 ± 26 ms) and the resolution of the
analysis (125 ms), the start of each trial (green rectangles) was
located in the time bin tlag = 250 ms after issuing its cue from
software. Furthermore, subtracting the optimal FI mode length
of the window of analysis from its optimal right side offset
and averaging over all subjects revealed an average interval of
357 ms between trial start and start of the SSVEP (cf., Table
IV). The optimal time for classification was thus located in the
consecutive trial. In the FF mode, the last opportunity to classify
was the moment when the next cue (feedback) needed to be is-
sued (red rectangle). Thus, the time bins [500ms . . . 1125ms]
(see Fig. 11) featuring high ITRs were inaccessible in the FF

mode. The FI mode, however, allowed to exploit those high
ITRs by classifying at any offset Δt, even after the next cue was
already issued. This supports our idea that overlaying classifica-
tion of the current trial with stimulation of the next can improve
the ITR substantially.

By subtracting the optimal FF mode length of data window
from the respective optimal length of trial and averaging over
all subjects, we found that only ∼ 49.8% of all available time
slots were informative for classification. In the FI mode, while
allowing for classification during the consecutive trial, the same
parameter revealed that ∼ 22.5% (205 ms on average cf., Ta-
ble IV) of all available time slots were still uninformative for
classification—a dead time of the SSVEP response.

Comparing FI and FF ITRs over all tested trial lengths (see
Fig. 12), we found that the impact of the noninformative de-
lays on the FF ITR increased with decreasing trial length. For
short trials, the FF ITRs dropped toward 0 Bits/min as the time
was completely consumed by the delays and dead time of the
SSVEP response. FI ITRs approached FF ITRs asymptotically
as the proportion of the uninformative overhead diminished with
longer trials.

To lessen the negative effect of the SSVEP transients, we
trained a set of TI classifiers on the transients. In our data, sub-
jects with comparatively high ITR performance benefitted from
using the TI classifier, whereas subjects with lower performance
did not show large differences between classifier types (see
Fig. 13).

Omitting the no control state class led to an ITR improvement
for most subjects. The final system reached an average simulated
online ITR of 181 Bits/min (peak value 295 ± 12 Bits/min) in
the FI mode and an average ITR of 124 Bit/min (peak value
187 ± 7Bit/min) in the FF mode. Table IV summarizes the
final results and optimal parameter values (mode in case of L,
l, and Δt).

During recording, the trial length was varied with the intention
to optimize FI (but not FF) mode ITRs. In the FF mode, the
optimal trial lengths equaled the largest value tested for three
out of seven subjects, suggesting that not for every subject a
global optimum was reached.

V. DISCUSSION

The main rationale of our approach to maximizing the ITR
of an FDMA SSVEP BCI was to divide it into its main compo-
nents, to study their properties, and to optimize their parameters
individually.

We started with the hardware components. The communica-
tion pathway of a FDMA SSVEP BCI has certain similarities
with digital communication: the stimulator acts as the sender or
generator of a number of different carrier frequencies. These are
selected or modulated by the intent of the subject, received by
the EEG sampling process, and interpreted by the analysis algo-
rithm. Such communication benefits from a stable clock signal
known to both sender and receiver. We designed a real-time-
capable LED stimulator driven by the clock signal of the EEG
amplifiers analog to digital converter. The operation based on
this common, comparatively fast, and system-wide clock signal
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TABLE IV
SUBJECT PERFORMANCE OVERVIEW (CCAFSF)

Fig. 12. Comparison of FI (solid lines) and FF (dashed lines) mode
ITRs over trial lengths L for each subject (subplots). All 17 classes, TI
classifiers, and optimal l and Δt parameter values were used for each
data point. Ordinates are labeled with the respective maxima.

Fig. 13. ITR comparison of TI (solid line) and FE (dashed line) clas-
sifiers over trial length L for each subject (subplots). All 17 classes, FI
mode, and optimal Δt and l parameters were used for each data point.
Ordinates are labeled with the respective maxima.

allowed for a broad range of native and accurately displayable
stimulation frequencies. In comparison, PC screen-based stim-
ulators feature a broader availability, decreased resolution in
time, and usually lack the option to be synchronized with an
external clock signal, as well as a highly constant frame rate.
Differences in the independent clock sources of the EEG Am-
plifier and the PC screen are expected to result in inaccuracies
of the stimulated and detected frequencies, and should result in
decreased feature contrasts.

Our data confirmed ([8]) differences in feature value contrasts
between the individual stimulation frequencies. To account for
this parameter, we adjusted the stimulation frequencies for each
subject by SMCV to yield maximal contrast between target
classes. Bin et al. [14], as well as recent CCA-based SSVEP
BCI implementations ([16], [26], [27]), each applied a maxi-
mum criterion for classification of the feature values. However,
the authors in [16], [26], and [27] utilized training data, while
[14] did not. If training data are available, we propose to ac-
count for the differences in baseline power, attended power, and
feature contrast ([8]; compare Table I), not only during initial
stimulus optimization, but in the classification process as well
(here implemented as DQDA).

Improvements targeting components of the CCA method
show great potential in recently published SSVEP BCIs. Chen et
al. [15] divided the ideal sinusoidal reference signals into a filter
bank of overlapping subbands in order to access the indepen-
dent information contained in the harmonics. Zhang et al. ([26]
and [27]) replaced the artificial reference signals with training
data. Our implementation optimized the number (1 or 2) of ideal
sinusoidal harmonics in the reference signal. Higher order har-
monics contains the potential for further ITR optimization, as
pointed out by the reviewers.

We analyzed dynamically stable properties of a continuous
SSVEP and trained FE classifiers for data of the FE state using
different length of the window of analysis. Our data suggest that
the degradation of CCA performance on short data windows
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(also reported by Wu [13]) is mainly caused by the spatial filter
component of the CCA. Under the assumption that the spatial
origin of the SSVEP signal is stationary, this challenge can be
overcome by precomputing the spatial filter from long segments
of transition-less, FE SSVEP data and then applying it on shorter
windows.

Nakanishi et al. [16] also optimized the spatial filter com-
ponent of the CCA (∼ +70% ITR improvement vs. CCA), but
used averaged training data as reference signals, and projected
on a bank of spatial filters determined pairwise from all possible
combinations of reference signal, test data, and ideal sinusoids.
Compared to the method employed in [16], CCAFSF features
a decreased complexity of the algorithm (serialized execution
of two standard CCAs; single spatial filter and correlation in-
stead of a pairwise filter bank; ideal sinusoidal reference instead
of a data driven approach), but comparable, if not increased,
efficiency (+107% VITR improvement versus CCA).

Due to the serialized execution of two standard CCAs in
CCAFSF, the method allows for combination with other CCA
optimizations targeting different parameter dimensions (e.g.,
FBCCA [15]). In a similar way, the phase feature extraction
implemented here exploited the increased signal contrast in the
subspace defined by CCAFSF.

Chen et al. [17] recently adopted the method in [16] and
incorporated the highly efficient (267 Bits/min) JFPM stimulus
encoding technique.

Comparison of the currently fastest published SSVEP BCIs
([15]–[17], [26], [27]) reveals a number of evolving functional
components (stimulus encoding, reference signal design, spa-
tial filter training, classification) recently centered around im-
provements to the standard CCA algorithm [14]. This develop-
ment suggests a not yet fully exploited optimization potential
of the individual components and even more so their optimal
combination.

Our analysis showed that the implementation specific upper
limit of the VITR, resulting from classification of data in the
FE state, can reach up to ∼ 1kBit/min in some subjects. Such
rates will not be achieved in practical online systems, though,
because the switching between targets causes transients in the
SSVEP response.

We analyzed this transient activity using a dedicated protocol.
A visual cueing method indicated the next target to attend to,
once the next short auditory beep was perceived. The auditory
cue was given in constant intervals and classification result neu-
tral (beep) similar to a metronome. This method avoids search-
ing the target layout for the next item to be entered by simply
marking it by color. In this manner, faulty memory recalls and
delays associated with searching or recalling the next target are
avoided and the duration of continuous input is extended. We
consider this a model for a real life application by a subject who
is firmly trained on the device and who produces input on own
intend while still randomizing the target sequence.

The transients were shown to consist of dead times, the
SSVEP entrainment processes, and delays, which each con-
stituted a negative impact to the system‘s ITR. To lessen this
impact, we optimized the time available for each input L,
the length of the window of analysis l, its offset Δt rela-

tive to the auditory cue, and the classifier training set (FE or
TI). Furthermore, we compared the application of two differ-
ent modes of operation (FI and FF) and two sets of targets
(with and without the no-control state). The ITR optimization
was implemented as an exhaustive search and left system ac-
curacy as a driven, dependent value. In BCI applications in
which a higher than ITR effective accuracy is desirable, an ad-
ditional accuracy constrained can be added to the exhaustive
search.

A comparison of classifier performance when using training
data taken from the FE SSVEP (FE classifier) versus training
data taken from the interval when the SSVEP get entrained (TI
classifier) revealed that if the TI classifiers outperform the FE
classifiers for the individual subject, the resulting ITR being
among the highest of the population tested. We hypothesize that
the subject‘s ability to produce highly constant reaction times
to the auditory cue is a requirement for efficient TI classifier
operation, and that this behavior can be trained.

We evaluated the system’s performance with and without
using the no control state class and found that detection of the
no control state has a negative impact on the ITR; thus, it should
only be used if required by the application.

A key innovation in our study, which is not restricted to the
analysis or paradigm used here, is the introduction of an FI
operation mode for BCI. The delays of a closed-loop system
add to the time required per roundtrip. In a BCI where feedback
of the classification result cues for the next input (FF mode),
these delays directly add to the time required per input but do
not contribute information to the classification process. This
resembles the inefficiency incurred from visually validating the
result of every keystroke before performing the next when typing
on a keyboard.

By separating the system-to-subject communication into two
components—feedback of the classification result (data) and
input cue signal (clock), we effectively decoupled the subjects
BCI input stream from the classification result feedback stream.
In the FI mode, the now independent cue signal was issued
early and preceded classification to increase the system‘s input
bandwidth by shifting the delays from the BCI‘s input (target
selection) to its output (classification result feedback). The re-
sulting ITR increase comes at the cost of the disability to react
to the very last classification result in the next input. The ability
to react to feedback is only delayed, however, so the possibil-
ity to react to the second to last or older classification results
(depending on the fraction of time required per input and the de-
lays) remains. The reaction to delayed feedback requires covert
attention to the feedback stream as well as synchronization of
the next (correcting) input with the next cue. We consider the
visual cueing method (red LED) implemented here as a model
for this simultaneous covert attention task.

Depending on the BCIs eventual application, the FI or FF
mode remain a choice of design. Sometimes, it might be prefer-
able to perform the next input as soon as ITR effective at the cost
of delayed feedback (FI mode). Other times, it can be preferable
to idle the classification process and drop data until classifica-
tion feedback was perceived, reacted to, and resulted in the next
SSVEP state change, in order to enable seemingly “immediate”



SENGELMANN et al.: MAXIMIZING INFORMATION TRANSFER IN SSVEP-BASED BRAIN–COMPUTER INTERFACES 393

(from the perspective of the subject) reaction to feedback at the
cost of reduced ITRs (FF mode).

In this study, feedback was not given during any of the exper-
iments. The subjects instead reacted to an audio cue that did not
carry information about the classification result. Feedback about
a false classification result is expected to introduce additional
reaction time delays. The FI and FF ITR results presented here
do not take these additional delays into account, but only mea-
sured the unidirectional subject to system information transfer
at the output of the Level 1 BCI control module [24].

Cue-guided spelling allows both to clock the BCI’s input at
a predetermined optimal ITR rate and to circumvent the neg-
ative effect of the system‘s delays on the input bandwidth if
issued early (FI mode). Aligning the window of analysis rel-
ative to the input cue is assumed to enable classification with
increased precision, as the time at which the input occurs does
not have to be deducted from the data. The same cue-guided in-
put restrictions which benefit the receiver, however, hinder the
sender, limit the possible input correction strategies, and con-
stitute an overall less intuitive, more difficult to perform, input
scheme.

The ratio of the optimal length of the window of analysis and
the time available for each input revealed that only ∼ 49.8 % of
the total exposition to stimuli was informative for classification
in the FF mode. This result matches the bandwidth utilization
reported in the currently fastest SSVEP BCI implementation
[17] (0.5 s stimulation followed by 0.5 s target selection).

The analysis of the FI mode data revealed an improvement
of this ratio to ∼ 22.5% by minimizing the negative impact
of the system‘s delays on the input bandwidth. The remaining
losses represent an effective dead time of the detectable SSVEP
response (less informative than efficient for classification) and
are expected to define the system-specific maximum input rate.
Methods to further reduce these bandwidth losses appear highly
desirable for further ITR improvements.

The main difference between the FF and the FI mode resulted
from the delays of the system and subject. Using a low latency
hard- and software implementation allows to nearly eliminate
the system’s contribution to this discrepancy. However, the la-
tency introduced by the subject (treact) comprised of the reaction
time and latency of the visual pathway (∼ 140 ms according to
[17]) remains. In the FI mode, these remaining latencies can be
circumvented at the cost of delayed feedback.

We demonstrated the considerable impact of the delays on
FF mode ITRs. These delays, however, are usually not reported
in BCI studies ([15], [16], [19]). The reported ITRs are conse-
quently compromised by considerable uncertainty. FI mode ITR
results are not biased by the individual system delays and thus
easier to interpret and considered to be better suited to compare
the performance of presented algorithms.

The reference signal is used in the CCA models SSVEPs that
have constant amplitude over the whole window of analysis.
We expect that consideration of the dynamics of the SSVEP
power envelope during transition periods would allow access to
additional information from the interval appearing as effective
dead time to the constant amplitude model. Such a method,
however, is yet to be developed.

VI. CONCLUSION

Our component-wise analysis of an FDMA SSVEP BCI re-
veals an upper limit for the ITR at 490 Bit/min on average,
reaching up to 1 kBit/min in individual subjects. We analyze
why current FDMA SSVEP BCIs and our FF mode implemen-
tation (average 124 Bit/min; peak 187 ± 7Bit/min) fall short of
these rates, and present methods that address them. The resulting
FI BCI system increases the bandwidth available for subject-to-
system transmission and thus ITR (average 181 Bit/min with
295 ± 12Bit/min peak performance) by circumventing input
latencies of the BCI system at the cost of delayed classification
result feedback. We introduce the CCAFSF feature extraction
method and demonstrate a +107% VITR increase on data of
the FE SSVEP when compared to the standard CCA [14]. Our
analysis of the transitions between targets reveals a dead time
of the SSVEP response which defines a maximum input rate
for the BCI and is shown to be further responsible for the drop
in ITR from the upper limit, when the SSVEP is FE, to the
online system. We therefore suggest to develop feature extrac-
tion methods which specifically evaluate the transitions between
SSVEP states, rather than considering the SSVEP as constant
in power over the whole window of analysis.
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