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directly (Heekeren et al., 2004; Pesaran et al., 2008), but mainly been 
inferred (Wang, 2002, 2008; Mazurek et al., 2003; Lo and Wang, 
2006; Gold and Shadlen, 2007).

A hallmark of the neuronal interactions underlying perceptual 
decisions is their flexibility. The mapping of sensory evidence onto 
motor actions is not a stereotyped reflex but depends strongly on 
the decision-maker’s current behavioral goals. In different contexts, 
the exact same sensory input can be mapped onto different actions. 
Similarly, the same action can be selected in the face of different 
sensory inputs. To account for this flexibility, theories of cognitive 
control postulate “top-down” signals that selectively bias the flow 
of information in the brain’s sensorimotor pathways, such that only 
the sensory and motor neuronal populations relevant for the goal 
at hand communicate with one another, whereas goal-irrelevant 
pathways are shut down (Miller and Cohen, 2001). These top-down 
signals are thought to originate from prefrontal and posterior pari-
etal association cortices (Miller and Cohen, 2001; Corbetta and 
Shulman, 2002).

Most current models of perceptual decision-making conceptu-
alize the decision formation as a feedforward integration process 
from sensation to action (Usher and McClelland, 2001; Mazurek 
et al., 2003; Smith and Ratcliff, 2004). However, the actual cortical 
circuits implementing this process likely engage in highly recur-
rent interactions (Lamme and Roelfsema, 2000; Wang, 2008). Such 
recurrent interactions are mediated by the abundant bi-directional 

We often need to select our actions based on perceptual interpre-
tations of noisy, incomplete, or ambiguous sensory information 
about our environment. Imagine driving on the highway on a rainy 
night. To discern if the cars in front of you slowed down, you try to 
judge whether their brake lights are looming. After accumulating 
the sparse sensory information for a few moments you eventually 
decide to hit the brake.

During sensory-guided behaviors such as this one, perceptual 
states are flexibly mapped onto our motor actions, a process referred 
to as perceptual decision-making (Figure 1; Gold and Shadlen, 2001, 
2007; Usher and McClelland, 2001; Heekeren et al., 2008; Tosoni 
et al., 2008). Dynamic interactions between multiple processing 
stages of the brain’s sensorimotor pathways lie at the heart of such 
decision processes. Invasive recordings in monkeys performing sim-
ple sensorimotor tasks have characterized the detailed functional 
properties of individual neurons in these processing stages (Schall, 
2001; Glimcher, 2003; Romo and Salinas, 2003; Gold and Shadlen, 
2007; Kable and Glimcher, 2009). These studies have shown that 
neurons in sensory, parietal, and frontal cortices, are involved in 
encoding the sensory evidence, accumulating this evidence over 
time, and planning the ensuing motor action. These results have 
inspired circuit models of the large-scale interactions between these 
processing stages (Wang, 2002, 2008; Mazurek et al., 2003; Lo and 
Wang, 2006; Gold and Shadlen, 2007). However, until recently, 
these large-scale interactions have only rarely been characterized 
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cortico-cortical connections (Felleman and Van Essen, 1991). For 
example, sensorimotor association regions of the parietal and 
frontal cortex commonly display highly similar response profiles 
during decision formation (Kim and Shadlen, 1999; Shadlen and 
Newsome, 2001; Pesaran et al., 2008). Furthermore, neuronal activ-
ity even at the earliest sensory processing stages (such as visual corti-
cal areas V1 and V2) does not merely reflect the sensory evidence 
but also the result of the perceptual decision process, likely via 
feedback from downstream areas (Donner et al., 2008a,b; Nienborg 
and Cumming, 2009). In sum, even simple perceptual decisions 
emerge from recurrent and flexible interactions between widely 
distributed regions of the cerebral cortex. How can we get a glimpse 
on these interactions?

NeuroNal oscillatioNs: a wiNdow oN the dyNamics 
of decisioN-makiNg
Magnetoencephalography (MEG) combined with source recon-
struction techniques is ideally suited to simultaneously moni-
tor the dynamics of neuronal population activity across widely 
separated regions of the human cerebral cortex and to character-
ize the dynamic interactions between these regions. Moreover, 
the exquisite temporal resolution of MEG allows for character-
izing the fine temporal structure of cortical population activity. 
A pervasive feature of this activity is that it displays oscillations 
across a broad range of frequencies and spatial scales (Buzsaki 
and Draguhn, 2004).

A growing body of evidence suggests that such neuronal oscil-
lations play an important functional role in cortical information 
processing. Coherent oscillations, within and between cortical 
regions may flexibly regulate the interactions among distributed 
neuronal populations (Engel et al., 2001; Salinas and Sejnowski, 
2001; Varela et al., 2001; Fries, 2005; Haider and McCormick, 2009). 
On the one hand, synchronization of presynaptic spikes within a 
local cortical region enhances their functional impact on postsy-
naptic neurons in a super-additive fashion (Alonso et al., 1996; 
König et al., 1996; Azouz and Gray, 2003). On the other hand, the 
phase-alignment of presynaptic spikes to postsynaptic oscillations 
modulates their efficiency in driving postsynaptic spikes (Fries, 
2005; Womelsdorf et al., 2007; Haider and McCormick, 2009). Both 
types of synchrony may serve as flexible mechanisms to control the 
gain of local and long-range neuronal communication.

Furthermore, neuronal oscillations at different frequencies may 
provide valuable mechanistic information about the interactions 
between groups of neurons (Siegel and Donner, 2010). First, they 
may index interactions within specific neural circuits. Local cortical 
oscillations in the gamma-band (30–80 Hz) provide an intriguing 
example for a spectral signature for which the detailed circuit-level 
mechanisms are becoming increasingly clear. Second, more generally, 
neuronal oscillations may reflect different types of neural interac-
tions. In particular, they may reflect reverberating activity within 
local as well as large-scale cortical networks (Wang, 2003). Such 
reverberation may mediate persistent cortical activity and recur-
rent cortical processing (Siegel et al., 2000, 2009; Tallon-Baudry 
et al., 2001; Pesaran et al., 2002; Van Der Werf et al., 2008), which, in 
turn, may underlie the protracted accumulation of sensory evidence 
during decision-making. Third, neuromodulators such as norepine-
phrine or acetylcholine profoundly shape the synaptic interactions 
between cortical neurons. Thus, the spectral signature of neuronal 
oscillations may also reflect the effects of neuromodulators (Steriade, 
2000; Rodriguez et al., 2004), which, in turn, play important roles 
in decision-making (Aston-Jones and Cohen, 2005; Yu and Dayan, 
2005). In sum, the spectral signature of cortical population activity 
may provide rich information about the detailed neuronal circuit 
dynamics underlying decision-making. Such information might only 
be weakly expressed in the spiking activity of individual neurons.

dissectiNg a perceptual decisioN process
How does the flexible mapping of sensory “evidence” onto action 
plans emerge from these neuronal circuit dynamics? We addressed this 
question in a series of MEG experiments in humans, dissecting a single 
perceptual decision into its component sub-processes. In all experi-
ments subjects judged visual motion signals contained in dynamic 
random-dot patterns and reported their perceptual interpretation 
of these stimuli by button-press. By adjusting the fraction of coher-
ently moving dots in the random-dot patterns, we could precisely and 
specifically control the strength of the sensory feature of interest, i.e., 
visual motion (Figure 2A; Scase et al., 1996). Moreover, this enabled 
us to titrate the sensory evidence to the subjects’ individual detection 
threshold. Near psychophysical threshold, perceptual choices vary 
form trial to trial in the face of identical sensory inputs (Green and 
Swets, 1966). We could exploit these intrinsic fluctuations to isolate 
the neuronal mechanisms underlying the varying choices without 
confounding variations of the sensory input. This task also allowed 
us to focus our analyses on well-characterized cortical regions, which 
had been identified in previous single-unit recordings in monkeys 
(Newsome et al., 1989; Britten et al., 1993; Kim and Shadlen, 1999; 
Shadlen and Newsome, 2001; Roitman and Shadlen, 2002; Gold 
and Shadlen, 2007) and fMRI studies in humans (Rees et al., 2000; 
Shulman et al., 2001; Serences and Boynton, 2007). We used an adap-
tive spatial filtering technique (linear beamforming; Van Veen et al., 
1997; Gross et al., 2001) to estimate the dynamics of neuronal popula-
tion activity within and among these cortical processing stages.

gamma-baNd activity iN visual cortex reflects 
seNsory evideNce
We set out by investigating the input stage of the decision process, 
i.e., the encoding of sensory evidence for coherent motion (Siegel 
et al., 2007). Subjects were presented with dynamic random-dot 

Evidence
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Top-down
Selection

Action
Planning

Evidence-Action
Mapping ActionSensation

 

Figure 1 | Perceptual decision-making. Perceptual decision-making 
involves multiple sub-processes. These sub-processes include the dynamic 
selection of task-relevant sensorimotor pathways by top-down signals, the 
encoding of sensory evidence and action plans, and the mapping of sensory 
evidence onto motor actions.
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coherence, early visual areas around the calcarine  displayed the 
strongest average gamma-band response (Figure 2D, red shad-
ing). By contrast, the robust increase in gamma-band activity with 
motion strength predominated in motion-sensitive extrastriate 
cortical regions, such as area MT and other regions in occipito-
parietal cortex (Figure 2D, blue shading). These results sug-
gest that local gamma-band activity in functionally specialized 
regions of the visual cortex reflects the local processing of specific 
features of the visual environment. This is consistent with evi-
dence from other studies in animals (Frien et al., 2000; Siegel and 
König, 2003; Kayser and König, 2004; Henrie and Shapley, 2005; 
Liu and Newsome, 2006; Berens et al., 2008) and humans (Hall 
et al., 2005; Hoogenboom et al., 2005; Vidal et al., 2006; Wyart and 
Tallon-Baudry, 2008) demonstrating visual gamma-band activ-
ity as well as its dependence on stimulus strength and various 
stimulus features. This is further consistent with the finding that 
pre-stimulus fluctuations of gamma-band activity in visual cortex 
have an impact on visual detection decisions (Wyart and Tallon-
Baudry, 2009). Thus, local gamma-band activity in sensory cortex 
is a proxy for the encoding of sensory evidence during perceptual 
decision-making.

patterns at various different levels of motion coherence (Figure 2A) 
and, for each stimulus, reported the net motion direction (up vs. 
down) by button-press.

The moving stimuli induced robust population responses with 
a characteristic dynamic signature at sensors overlying visual cor-
tex (Figure 2B). Following a transient low-frequency response 
(reflecting the visual evoked field), the MEG power increased in a 
broad high-frequency range (about 40–150 Hz), accompanied by 
a decrease in the low-frequency range below 40 Hz. Both of these 
response components were sustained as long as the stimuli were on 
the screen. The response in a narrower gamma-band from about 
60 to 100 Hz increased approximately linearly with the strength 
of visual motion (Figure 2C). This frequency-specific parametric 
effect on the stimulus response was remarkably consistent across 
all individuals. We also observed a weaker and less consistent oppo-
site relationship in the lower frequency range (alpha- and beta-
bands). Here, activity monotonically decreased with increasing 
motion strength.

The modulation of the gamma-band activity with motion 
strength was specifically expressed in those regions of extrastriate 
visual cortex that process visual motion. Across all levels of motion 
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Figure 2 | gamma-band activity in visual cortex reflects the encoding of 
sensory evidence. (A) Schematic illustration of dynamic random-dot patterns at 
three levels of motion coherence. The percentage of coherently moving dots 
controls the strength of the motion signal and thus the strength of sensory 
evidence for the motion-discrimination task. (B) Time–frequency representation 
of neural responses to dynamic random-dot patterns recorded at MEG sensors 
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across seven subjects. (C) Gamma-band activity (62–102 Hz) over visual cortex 

during stimulus viewing (100–500 ms post stimulus onset) increases 
approximately linearly with motion coherence. The solid line indicates the 
significant linear effect (p < 0.01; n = 7 subjects). (D) Cortical distribution of the 
average gamma-band response (62–102 Hz) across all levels of motion 
coherence (red shading) and of the linear increase of gamma-band activity with 
motion coherence (blue shading). Data is shown for one representative subject. 
See Siegel et al. (2007) for full details and data from all individual subjects (IPS, 
intraparietal sulcus; MT, middle temporal area). Reprinted and modified with 
permission from Siegel et al. (2007).
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the motor movement). Just before the execution of the motor 
response, gamma-band activity (about 60–100 Hz) in pri-
mary motor (M1) and premotor (PMd) cortices was selectively 
enhanced contralateral to the button-press (Figures 3A,B). As for 
the stimulus-driven responses in visual cortex discussed above, 
this gamma-band enhancement was accompanied by a decrease 
of low-frequency activity (about 10–35 Hz) with two distinct 
peaks in the alpha- and beta-bands. This antagonistic modula-
tion of gamma-band and low-frequency activity in motor and 
premotor cortex is in line with previous intracranial and MEG 
studies (Crone et al., 1998a,b; Pfurtscheller et al., 2003; Cheyne 
et al., 2008).

Crucially, both components of the effector-selective activity were 
not only expressed after the completion of the decision process (i.e., 
after stimulus offset), but they built up gradually during stimulus 
viewing, while subjects were forming their decision (Figure 3C). 
Both components reliably predicted subjects’ final choice on single 
trials seconds before its execution. Thus, local gamma-band activ-
ity and an accompanying suppression of low-frequency activity in 
motor cortex reflect the evolving action selection in this protracted 
decision process.

build-up of cortical populatioN activity iN motor 
cortex reflects the evolviNg actioN plaN
The spectral signature of sensory encoding was highly consistent 
with the signature of action encoding at the cortical output stage of 
the decision process. In another experiment, the dynamic random-
dot patterns shown on each trial contained either pure dynamic 
noise, or a weak motion signal titrated to each subject’s individual 
detection threshold (Donner et al., 2009). Subjects formed a deci-
sion about the presence or absence of this target motion signal. 
Stimuli were presented for a fixed duration of 2 s and followed by a 
blank delay, after which subjects reported their choice (Figure 3A). 
In this task, psychophysical coherence detection thresholds decrease 
over stimulus durations of more than 3 s in humans. Thus, present-
ing motion signals at the subjects’ individual detection threshold 
ensured that each subject accumulated the evidence for motion 
until the end of the stimulus interval.

To track the subjects’ evolving plan to report either “target 
present” or “target absent” within the brain, we mapped these two 
perceptual choices onto button-presses with different hands. This 
allowed us to exploit the contralateral bias of the cortical motor 
system (i.e., stronger activity in the hemisphere  contralateral to 
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 accumulating the sensory evidence delivered by MT. Posterior 
parietal and  prefrontal association cortex have long been known 
to exhibit persistent neuronal activity (Miller and Cohen, 2001; 
Wang, 2001; Pessoa et al., 2002; Machens et al., 2005). More recently, 
these regions have also been implicated in the temporal integration 
of sensory evidence (Wang, 2002; Heekeren et al., 2004, 2008; Gold 
and Shadlen, 2007; Kaiser et al., 2007).

The results discussed in this section show that the outcome of 
the temporal integration process is continuously routed through all 
the way even to primary motor cortex. This conclusion is consistent 
with a previous microstimulation study in the monkey’s oculomo-
tor system (Gold and Shadlen, 2000) and suggests a highly continu-
ous flow of information in the sensorimotor pathways (Kim and 
Shadlen, 1999; Shadlen and Newsome, 2001; Horwitz et al., 2004; 
Gold and Shadlen, 2007). This contradicts the traditional notion 
of a “central executive” that first completes the decision process 
before sending its end result to the output stage.

froNtal–parietal beta-baNd oscillatioNs predict the 
accuracy of evolviNg decisioN
How can one obtain a more direct handle on the neuronal mecha-
nism of the evidence–action mapping per se? A powerful strategy 
is to exploit the fact that, at low levels of sensory evidence, sub-
jects often make incorrect choices. A substantial fraction of these 
performance fluctuations is thought to be driven by variability at 
the decision stage (Shadlen et al., 1996). Specifically, we reasoned 
that the more efficiently the evidence–action mapping mechanism 
operates on any given trial, the more likely subjects will make a 
correct choice on that trial. Thus, we compared neuronal activity 
in the motion-detection task between correct and incorrect trials 
(Donner et al., 2007). Enhanced activity in a narrow “low beta” 
frequency range (about 12–24 Hz) predicted the correctness of 
the subjects’ upcoming choice (Figure 4A). This effect specifically 
emerged during the stimulus interval, that is, while subjects were 
accumulating the sensory evidence and while activity was building 
up in their motor cortex. This performance-predictive beta-band 
activity was expressed in a widespread network across the cerebral 
cortex, predominantly in posterior parietal and dorsolateral pre-
frontal cortex and, less strongly, in visual (e.g., area MT) and motor 
cortex (Figure 4B).

Beta-band activity in these regions was higher before “hits” than 
“misses” on target present trials and higher before “correct rejects” 
than “false alarms” on target absent trials (Figure 4C). Thus, this 
beta-band activity predicted the accuracy (correct vs. error) but 
not the content (target present vs. target absent) of the upcoming 
choice. This suggests that the widespread, performance- predictive 
beta-band oscillations reflect the computations governing the deci-
sion process rather than neuronal representations involved at its 
different stages (deCharms and Zador, 2000). In other words, 
the trial-to-trial fluctuations of beta-band activity do not reflect 
fluctuations of the neuronal representations of sensory evidence, 
decision variables, or action plans, but rather fluctuations of the 
flexible mapping between these representations.

What is the specific functional role of the performance-predictive 
beta-band oscillations? Several recent studies reported analogous 
beta-band oscillations across frontal and parietal cortices during 
visuomotor tasks in humans (Gross et al., 2004; Hipp et al., 2011) 

We interpret the gamma-band enhancement as a more direct 
marker of the local neuronal representation than the suppression 
of low-frequency activity, for a number of reasons. First, for both, 
sensory and motor responses, gamma-band activity is positively 
correlated with local processing while low-frequency activity shows 
the opposite relationship. Second, intracranial recordings from 
motor cortex show that gamma-band modulations are typically 
anatomically more focused than the low-frequency suppressions 
(Crone et al., 1998a,b; Pfurtscheller et al., 2003). This also explains 
why these premotor gamma-band modulations are more difficult 
to detect in extracranial signals like EEG and MEG than in direct 
invasive recordings from the cortical surface. Third, gamma-band 
activity in motor cortex typically shows a stronger effector-selec-
tivity (Crone et al., 1998a,b; Pfurtscheller et al., 2003; Rickert et al., 
2005; Cheyne et al., 2008). Fourth, in our own data, the premotor 
gamma-band modulations were more closely linked to the ongoing 
decision process, as discussed in the next section.

choice-predictive activity is driveN by iNtegrated 
seNsory evideNce
The results discussed so far established frequency-specific neuronal 
signatures for the task-relevant sensory evidence (visual motion: 
gamma-band activity in MT) and the evolving motor plan (but-
ton-press: gamma-band activity in motor cortex). A large body 
of evidence suggests that the evidence encoded in sensory cortex 
is integrated across time during the decision process (Kim and 
Shadlen, 1999; Shadlen and Newsome, 2001; Usher and McClelland, 
2001; Roitman and Shadlen, 2002; Smith and Ratcliff, 2004; Gold 
and Shadlen, 2007). The simultaneous monitoring of sensory evi-
dence and motor plan with MEG provides an ideal opportunity 
to test this model. If the choice-predictive build-up of activity in 
motor cortex is driven by the temporal integral of evidence for 
motion delivered by MT, then the trial-to-trial fluctuations of this 
motor activity should be predicted by the trial-to-trial fluctuations 
of the integrated MT activity.

This is what we found (Figure 3D; Donner et al., 2009). The 
temporal integral of gamma-band activity in MT predicted the 
choice-predictive motor activity in the gamma- and beta-bands. 
The opposite sign of correlation reflected the opposite sign of 
movement-selective activity in these bands (Figures 3A–C). This 
correlation was stronger for premotor activity in the gamma-band, 
suggesting that the local gamma-band activity is more tightly linked 
to the local neuronal representation than low-frequency activity (see 
above). Notably, the correlation between choice-predictive motor 
activity and gamma-band activity in MT was much weaker if not 
the integral of MT activity but only its instantaneous activity was 
taken into account. Further, the correlation between MT-integral 
and motor activity did not merely emerge at the end of the decision 
process (the stimulus offset), but was continuously expressed dur-
ing stimulus viewing, irrespective of whether the decision-process 
resulted in a “target present” or a ‘absent” choice. These observations 
establish a first direct link between the neuronal dynamics of sen-
sory evidence and motor plan during perceptual decision-making 
and provide strong evidence for the temporal accumulation model.

Importantly, our results do not imply that the temporal inte-
gration process takes place in the motor cortex. Any process-
ing stage between MT and the motor cortex may be involved in 
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is often selective for only those sources of sensory evidence that 
are relevant for achieving our goal. Think again about driving your 
car at night. You may not only decide to hit the brake when traffic 
slows down but also when you want to exit the highway. In the 
former situation you pay attention to the cars in front of you. By 
contrast, in the latter case your motor response is based on other 
parts of the available visual information such as the road signs 
signaling your exit.

The top-down selection of sensory evidence is commonly 
referred to as “selective attention.” Oscillatory synchronization 
of neuronal activity has frequently been proposed as a candidate 
mechanism of attention (Gruber et al., 1999; Worden et al., 2000; 
Engel et al., 2001; Fries et al., 2001; Taylor et al., 2005; Vidal et al., 
2006; Saalmann et al., 2007; Wyart and Tallon-Baudry, 2008). In 
another MEG experiment (Siegel et al., 2008), we thus investigated 
how selective attention modulated cortical population dynamics 
along the different stages of the sensorimotor pathway. On each 
trial, subjects were visually cued to covertly shift their focus of 
attention to either the left or right visual hemifield, where two 
random-dot patterns were simultaneously presented after a delay 
(Figure 5A). Subjects then judged the net-direction of motion of 
the cued stimulus while ignoring the uncued stimulus. Again, we 
adjusted the levels of motion coherence to the subjects’ individual 
psychophysical thresholds. This ensured that the task was atten-
tionally demanding. To isolate the neuronal correlates of spatially 
selective attention, we contrasted modulations of neuronal activ-
ity between the hemispheres contralateral and ipsilateral to the 
attended hemifield.

Visual–spatial attention modulated local oscillatory popu-
lation activity throughout the visuomotor pathway in a spa-
tially selective fashion (Figure 5B). We observed attentional 
modulations of local synchrony in visual cortical areas con-
sistent with previous studies (Fries et al., 2001; Bichot et al., 

and monkeys (Pesaran et al., 2002, 2008; Buschman and Miller, 
2007, 2009). The performance-predictive frontoparietal beta-band 
activity in our task likely does not reflect trial-to-trial fluctuations 
of the subjects’ level of arousal or top-down selective attention. 
Fluctuations of arousal are typically slow, spanning several trials. 
Thus, such fluctuations should be expressed during the pre-stim-
ulus baseline interval. Also fluctuations of selective attention are 
often evident during the pre-stimulus baseline (Ress et al., 2000). 
By contrast, there was no evidence for performance-predictive beta-
band activity before stimulus onset, but this activity only occurred 
during the decision period of the trial. Furthermore, several stud-
ies discussed in the next section have demonstrated very different 
spectral profiles for top-down selective attention in similar cortical 
regions.

Nevertheless, the performance-predictive beta-band activity 
bears functional similarity with attention. It reflects a mechanism 
that, similar to attention, governs the accuracy of a flexible sen-
sorimotor transformation. The beta-band oscillations may reflect 
reverberant activity within and among visual, frontoparietal, and 
motor cortices (Wang, 2002; Engel and Fries, 2010). This large-
scale network reverberation may help maintain and accumulate 
sensory evidence during the decision formation (Donner et al., 
2007). Such activity may also reflect the maintenance of the sen-
sorimotor mapping rule between accumulated sensory evidence 
and action. Further experiments are required to assess these not 
mutually exclusive scenarios.

top-dowN atteNtioN is mediated by local aNd 
large-scale syNchroNizatioN duriNg decisioN 
formatioN
Perceptual decision-making is not a passive response, but an active 
and flexible process. The evidence–action mapping can be flexibly 
adapted to our current behavioral goal. For example, this mapping 
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Figure 4 | Frontoparietal beta-band activity predicts decision accuracy. (A) 
Time–frequency representation of the difference in neural activity between 
correct and error trials recorded at MEG sensors overlying parietal cortex during 
the motion-detection task. (B) Cortical distribution of the performance-predictive 
beta-band activity (correct > error; p < 0.001 corrected; dlPFC, dorsolateral 

prefrontal cortex; PPC, posterior parietal cortex). (C) Mean beta-band responses 
in dlPFC, for each stimulus–choice combination. Data is shown for one 
representative subject. See Donner et al. (2007) for full details and data from all 
individual subjects (CR, correct rejects; FA, false alarms; M, misses; H, hits). 
Reprinted and modified with permission from Donner et al. (2007).
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lations differed markedly between temporal intervals with more 
prominent low-frequency suppressions before stimulus onset 
and enhanced high-frequency activity during stimulation. Thus, 
the large-scale investigation of attentional modulations through-
out the visuomotor pathway revealed a remarkable regional and 
temporal specificity of these modulations.

Having established that attention modulates oscillatory popula-
tion activity within visual cortex and attentional control regions, 
we investigated if the attentional selection of the behaviorally rel-
evant stimulus may be mediated by long-range synchronization 
between these processing stages. Membrane-potential oscillations 
establish periodic windows of enhanced excitability (Haider and 
McCormick, 2009). Attention may thus involve the phase-alignment 
of presynaptic spikes to postsynaptic oscillations to  dynamically 

2005; Taylor et al., 2005). In addition, we found spatially selec-
tive attentional modulations in the intraparietal sulcus (IPS) 
and the frontal eye fields (FEF). These higher cortical regions 
are involved in controlling the focus of attention (Kastner and 
Ungerleider, 2000; Corbetta and Shulman, 2002; Moore et al., 
2003; Serences and Yantis, 2006). The functional relevance of 
these attentional modulations was supported by their correlation 
with the subjects’ behavior. The strength of attentional effects 
before and during stimulus processing predicted the subjects’ 
perceptual accuracy on single trials. Surprisingly, the profiles 
of attentional modulations differed markedly between different 
processing stages (Figure 5B). E.g., during stimulus processing, 
attention selectively enhanced gamma-band activity in area MT, 
but beta-band activity in V1/V2. Furthermore, attentional modu-

A

C

B

Figure 5 | Local and large-scale synchrony reflects the attentional 
selection of sensory evidence. (A) Schematic illustration of the stimulus 
display during the spatially cued motion-discrimination task. (B) Attentional 
modulation of local oscillatory population activity in four regions of interest 
(marked on the inflated hemispheres to the left). Attentional modulations are 
displayed as predictive indices that quantify the probability with which an ideal 
observer can predict the direction of attention (left vs. right) from lateralization of 
neural responses between the left and right hemispheres on a single trial level. 
Predictive indices larger or smaller than chance level (0.5) correspond to an 
attentional enhancement or suppression of activity in the hemisphere 
contralateral to the attended hemifield, respectively. (C) Attentional modulation 

of frequency-specific long-range synchronization. Panels in the upper row 
display between which cortical regions spatial attention significantly enhanced 
synchronization in the hemisphere contralateral as compared to ipsilateral to the 
attended visual hemifield. Panels in the lower row depict corresponding 
attentional reductions of synchronization. Colors indicate the frequency bands of 
significantly modulated long-range synchrony. All attentional modulations are 
displayed separately for the delay interval (750–0 ms before stimulus onset) and 
stimulus interval (100–500 ms after stimulus onset). (*p < 0.05, **p < 0.01, 
***p < 0.001 corrected; FEF, frontal eye field; PIPS, posterior intraparietal sulcus; 
MT, middle temporal area; V1/V2, pericalcarine cortex). Reprinted and modified 
with permission from Siegel et al. (2008).
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local aNd large-scale oscillatory Network 
iNteractioNs mediate perceptual decisioN-makiNg
The experiments described above provide a first comprehensive 
characterization of the cortical dynamics underlying a percep-
tual decision. We delineated the spectral signatures and corti-
cal  distributions of its component sub-processes. This revealed 
 multiple local and large-scale oscillatory networks mediating the 
decision (Figure 6).

At the peripheral stages of the decision process (visual and 
motor cortex), local gamma-band activity consistently reflected 
the encoding of sensory evidence and the evolving motor plan 
(Figure 6A). Both, sensory and motor-related gamma-band activity 
was accompanied by a suppression of local low-frequency activ-
ity. Converging evidence suggest that local cortical gamma-band 
oscillations are generated by locally recurrent interactions between 
excitatory neurons and GABAergic interneurons (Siegel et al., 2000; 
Hasenstaub et al., 2005; Bartos et al., 2007; Gieselmann and Thiele, 
2008; Cardin et al., 2009). These excitatory–inhibitory feedback 
loops become engaged during enhanced processing within local 
cortical networks and play an important role in shaping the struc-
ture of local neuronal representations (Heeger et al., 1996; Shapley 
et al., 2003). Thus, gamma-band activity within visual and motor 
cortex indexes the local circuit interactions underlying the encoding 
of sensory evidence and motor plans. Furthermore, local excita-
tory–inhibitory interactions, and thus local gamma-band activity, 
may not only be driven by feedforward inputs to the local network 
(e.g., visual input in visual cortex) but also by feedback signals 
originating from higher cortical regions (e.g., attentional signals 
in visual cortex; Fries et al., 2001; Siegel et al., 2008).

regulate the information flow between areas (Engel et al., 2001; 
Fries, 2005). Consistent with this hypothesis, we found that atten-
tion modulated long-range oscillatory synchronization between 
frontoparietal control regions (IPS and FEF) and visual cortex (MT; 
Figure 5C). In contrast to the effects on local population activity, 
attentional modulations of long-range synchrony were compara-
tively stimulus independent (compare Figures 5C,B). Before and 
during stimulus presentation, attention selectively enhanced long-
range synchronization in the gamma-band (35–100 Hz) and sup-
pressed low-frequency synchronization in the alpha- and beta-band 
(5–35 Hz) in the hemisphere processing the attended stimulus. 
Thus, visuospatial attention established a spatially selective pattern 
of long-range synchronization between frontoparietal and early 
sensory processing stages.

This modulation of synchrony may allow specific neuronal pop-
ulations within control regions to communicate top-down signals 
to specific populations in visual cortex without the control regions 
being necessarily involved in the sensorimotor transformation 
per se. Alternatively, phase coherence throughout the sensorimotor 
pathway may enhance the feedforward routing of selected infor-
mation to the motor stage. Recent results on synchrony between 
FEF and V4 in monkeys (Gregoriou et al., 2009) suggest that both 
mechanisms are involved. During sustained attention, synchrony 
primarily mediates feedforward interactions, while feedback inter-
actions are dominating during shifts of attention. In summary, our 
results suggest that long-range oscillatory synchronization between 
frontoparietal control regions and early sensory processing stages 
mediates the selective routing of sensory information required for 
the perceptual decision at hand.
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Figure 6 | Oscillatory interactions in local and large-scale cortical networks 
mediate perceptual decision-making. (A) Local gamma-band activity in visual 
(MT) and motor cortex (M1) reflects the encoding of sensory evidence and motor 
plan, respectively. Top-down processes modulate this local activity. (B) Large-scale 
beta-band activity in a network centered on prefrontal (dlPFC) and parietal cortex 

(IPS) is involved in mapping the sensory evidence onto motor plans. (C) 
Large-scale gamma-band synchrony in a network across prefrontal (FEF), parietal 
(FEF), and visual cortex (MT) mediates the attentional selection of task-relevant 
sensory evidence (M1, primary motor cortex; MT, middle temporal area; dlPFC, 
dorsolateral prefrontal cortex; IPS, intraparietal sulcus; FEF, frontal eye field).
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integrative processes connecting these local representations, such 
as the selection of relevant sensory evidence and its flexible map-
ping onto action plans.

We are still far from understanding the mechanisms that under-
lie these oscillatory interactions during decision formation. We 
propose three directions of future research that may be crucial 
for unraveling these mechanisms. A first fundamental question 
is if the large-scale oscillatory interactions between distant brain 
regions are regulated by a superordinate “control region,” or if they 
primarily emerge from distributed network interactions. Evidence 
suggests that the prefrontal cortex may flexibly boost or block such 
interregional couplings, as necessary for the task at hand (Miller 
and Cohen, 2001). Indeed, our results revealed the FEF, a prefrontal 
region, as an integral part of the large-scale network controlling the 
flexible evidence selection. However, these interregional couplings 
may also emerge in a decentralized, self-organizing fashion. Future 
studies should distinguish between these alternatives.

Second, it remains to be determined how neuronal processing is 
integrated among distinct large-scale oscillatory networks. The par-
tially overlapping beta- and gamma-band networks discussed above 
provide an intriguing example. Cross-frequency interactions, such 
as phase–amplitude and phase–phase coupling between different 
rhythms, may play an important role for linking different oscillatory 
processes. Indeed, a growing body of evidence demonstrates different 
types of cross-frequency interactions in cortical population activity 
(Schack et al., 2002; Lakatos et al., 2005; Palva et al., 2005; Canolty 
et al., 2006; Jensen and Colgin, 2007; Siegel et al., 2009). Future studies 
should investigate if these cross-frequency couplings mediate interac-
tions between different oscillatory networks and if these interactions 
between networks are modulated in a task-dependent fashion.

Third, the cortical systems involved in decision-making are 
known to be under profound influence of ascending neuromodu-
latory systems (Montague et al., 2004; Aston-Jones and Cohen, 
2005; Yu and Dayan, 2005). These neuromodulatory systems are 
thus in an ideal position to dynamically shape these large-scale 
cortical interactions. Indeed evidence suggests that neuromodu-
latory systems play an important role in orchestrating oscillatory 
cortical activity (Rodriguez et al., 2004; Goard and Dan, 2009). 
Studying the impact of these neuromodulators on the patterns of 
large-scale cortical activity during decision-making will open up 
a new dimension in this field of research.

The results described here show that frequency-specific cortical 
population dynamics, as measured with MEG, provide a powerful 
window into the distributed dynamics of decision-making in the 
working human brain. Future studies should exploit this window 
to further our understanding of what it means “to decide.”
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The whole-brain coverage of MEG allowed us to also identify 
oscillatory interactions in two large-scale cortical networks as cen-
tral components of the decision process. First, beta-band activ-
ity in a widespread network centered on prefrontal and parietal 
association cortices seems to be instrumental in linking sensory 
evidence to motor plans (Figure 6B). Specifically, this large-scale 
beta-band activity may mediate the active maintenance of past 
 evidence during its accumulation and/or its flexible routing to 
motor plans. Second, top-down attentional selection of particular 
sources of sensory evidence was associated with enhanced gamma-
band synchronization in another large-scale network, spanning 
frontoparietal attentional control regions and extrastriate visual 
areas (Figure 6C). Gamma-band synchronization within this net-
work may mediate the attentional selection of the behaviorally 
relevant visual inputs.

Remarkably, the large-scale beta- and gamma-band networks 
partially overlapped in the posterior parietal cortex. This suggests 
that overlapping or even identical groups of neurons within this 
region may simultaneously participate in these two distinct large-
scale networks. The posterior parietal cortex may thus serve as a hub 
integrating the large-scale processes mediated by these networks. 
Thus, shifting the perspective from the responses of individual 
cortical neurons onto their embedding into large-scale functional 
networks may help understand the functional role of posterior 
parietal cortex for both, stimulus and action selection (Gold and 
Shadlen, 2001; Andersen and Buneo, 2002; Sugrue et al., 2005).

The distinct spectral signatures of the demonstrated local and 
large-scale oscillatory interactions likely reflect the different mecha-
nisms underlying these oscillations. As outlined above, the detailed 
mechanisms underlying local gamma-band activity are becoming 
increasingly clear. By contrast, comparatively little is known about 
the mechanisms shaping the spectral signatures of oscillatory inter-
actions within large-scale cortical networks. These signatures likely 
reflect global network properties such as the number of involved 
regions, synaptic distances, and conduction delays as well as local 
cellular properties such as the time-constants of various membrane 
conductances (Kopell et al., 2000). Furthermore, the spectral signa-
tures of large-scale interactions may also depend on local oscillatory 
networks embedded within these larger networks. Locally generated 
oscillations such as local gamma-band activity may provide the 
basic temporal scaffolding necessary to synchronize activity across 
larger networks. Large-scale spectral signatures may thus reflect 
global network properties, cellular properties, as well as the spec-
tral signatures of embedded local oscillations. In sum, the spectral 
signatures of local and large-scale neuronal oscillations provide 
valuable information about the specific circuit-level interactions 
underlying decision-making.

coNclusioNs aNd future directioNs
Taken together, our results begin to unravel how neuronal interac-
tions within overlapping cortical networks form flexible interfaces 
between perception and action during simple, well-controlled cog-
nitive tasks. On the one hand, fast oscillations within local networks 
subserve the representation of sensory evidence and motor plans 
at the periphery of the decision process. On the other hand, coher-
ent oscillations across large-scale cortical networks mediate the 
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