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Abstract
In this paper, a novel independent brain–computer interface (BCI) system based on covert
non-spatial visual selective attention of two superimposed illusory surfaces is described.
Perception of two superimposed surfaces was induced by two sets of dots with different colors
rotating in opposite directions. The surfaces flickered at different frequencies and elicited
distinguishable steady-state visual evoked potentials (SSVEPs) over parietal and occipital
areas of the brain. By selectively attending to one of the two surfaces, the SSVEP amplitude at
the corresponding frequency was enhanced. An online BCI system utilizing the attentional
modulation of SSVEP was implemented and a 3-day online training program with healthy
subjects was carried out. The study was conducted with Chinese subjects at Tsinghua
University, and German subjects at University Medical Center Hamburg-Eppendorf (UKE)
using identical stimulation software and equivalent technical setup. A general improvement of
control accuracy with training was observed in 8 out of 18 subjects. An averaged online
classification accuracy of 72.6 ± 16.1% was achieved on the last training day. The system
renders SSVEP-based BCI paradigms possible for paralyzed patients with substantial head or
ocular motor impairments by employing covert attention shifts instead of changing gaze
direction.

1. Introduction

Brain–computer interfaces (BCIs) can provide a direct
communication channel between the human brain and the
external world without using the normal motor output
pathways. A BCI offers an alternative method for people who
suffer from severe motor disabilities but have intact cognitive
capacities to interact with the environment. Great efforts
have been made to develop methods for extracting control
information from brain signals over the past decades [1–3].

One of the major BCI paradigms employs the modulation
of steady-state visual evoked potentials (SSVEPs). In a
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typical SSVEP BCI system, multiple stimuli flickering at
different frequencies are presented to the subject. The subject
overtly directs attention to one of the stimuli by changing
his/her gaze direction [4–6]. The attended stimulus elicits
enhanced SSVEP responses at the corresponding frequency
over occipital brain areas. The increase in SSVEP amplitude
can be detected in the EEG signal of single trials, classified
and translated into control commands. SSVEP BCIs show
good performance with regard to speed and accuracy. They
are considered, however, as ‘dependent’ BCIs since muscle
activities such as gaze shifting may be needed [1, 7].
Therefore, SSVEP BCIs might not be applicable for patients
with substantial head or ocular motor impairments.
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Figure 1. The experimental paradigm, (a) stimulus, (b) timing.

Nonetheless, ‘independent’ SSVEP BCIs are possible,
too. A large number of psychophysical and
neurophysiological studies have shown that people can
covertly shift attention to different spatial locations without
redirecting their gaze [8, 9]. In a binary decision task, for
example, accuracies between 75% and 90% can be achieved
with covert attention shifts [10, 11].

Visual selective attention could be shifted not only
between spatial locations, but also between entities like
surfaces or objects that are perceived at the same location.
Shifting attention to one out of several superimposed objects
improves behavioral performance (reaction time and accuracy)
and increases neuronal responses compared to when the object
is unattended [12–14]. Compared to the large number of
studies in the field of non-spatial visual attention research,
this effect is surprisingly little harnessed for independent
BCIs. In the only available study, two superimposed images
with vertical and with horizontal lines, oscillating at different
frequencies, were used as visual stimuli. Offline analysis
showed that 7 out of 14 subjects were able to exploit the
system for binary selection, and the predicted accuracy was
around 60–70% for most of them [15].

Adaptation is an important aspect of BCI research [16].
Here, ‘adaptation’ means co-adaptation between the human
brain and the computer: not only the computer updates
the algorithm for better classification, but also the human
can learn how to optimize behavior for improved computer
control. Although requiring little or no training is considered
as one of the important advantages of SSVEP BCIs, improved
performance by training has been reported [15, 17, 18]. The
higher the cognitive demands of the BCI, the more likely
performance will gain from training. Online feedback may
be particularly effective in this training process.

In this paper, a novel, independent, online SSVEP BCI
system is introduced. Two sets of dots with different colors
and flicker frequencies, rotating in opposite directions, are
used to induce the perception of two superimposed, transparent

surfaces. Subjects control the BCI system by selectively
attending to one of the two surfaces. A 3-day training
program with online feedback was conducted to investigate
the co-adaptation between BCI system parameters and human
behavior.

2. Experimental methods

2.1. Subjects

The experiment was conducted first with Chinese subjects
at Tsinghua University, and then continued with German
subjects at University Medical Center Hamburg-Eppendorf
(UKE) using identical stimulation software and equivalent
technical setup to assess the cross-laboratory reproducibility
of the new paradigm and the general reliability of the results.

22 subjects (11 graduate students from Tsinghua
University, China (2 females and 9 males) and 11 graduate
students from University Medical Center Hamburg-Eppendorf
(UKE), Germany (5 females and 6 males)), between 20 and
35 years old, participated as paid volunteers. All of them
showed normal or corrected to normal vision. Two subjects
(one female and one male) from Tsinghua University were
excluded in data analysis because they showed certain degrees
of color blindness to the colors used in the experiment by self-
report. Another two subjects (one female and one male) from
Hamburg University were excluded due to a failure to evoke
SSVEP at one of the stimulation frequencies. Therefore, a
total of 18 subjects was included in this study.

2.2. Stimuli

The stimulus is illustrated in figure 1(a). It was displayed on
an LCD monitor (DELL, USA) with 60 Hz refresh rate. The
viewing distance was 60 cm. A white dot was presented in
the center of the screen for fixation. Two dot sets of different
colors (blue and red) and equal brightness were presented on
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a black background, and randomly distributed in an annular
area between 2◦ and 20◦ visual angle from the central fixation
dot. Equal brightness was achieved by adjusting the pixel
intensities of the displayed color for each subject before the
experiments. Each dot subtended 0.3◦ of visual angle. The
blue dots flickered continuously at 10 Hz (2:4 duty cycle, 6
frames per cycle at 60 Hz refresh rate) and the red dots at 12 Hz
(2:3 duty cycle, 5 frames per cycle) throughout each trial. In
this study, the flickering frequencies of the dots were similar
to those used in previous studies [2, 10, 11]. In addition, all
blue dots were rotating clockwise around the central fixation
dot with an angular velocity of 1◦ per frame, and all red
dots rotated counter-clockwise with the same velocity. The
coherence of color and motion within each set of dots induced
the perception of two transparent, superimposed surfaces, to
which the subjects were instructed to covertly direct their
attention.

2.3. Experimental procedure

Before each trial, either a blue or a red dot was presented in the
center of the screen for 1 s as a cue informing the subject about
which surface to attend. After 1 s of blank screen, the stimulus
was presented for 4 s. Subjects were asked to direct attention to
the respective surface while maintaining fixation on the central
white dot. A colored dot of either blue or red was shown after
the stimulation period as feedback about the recognized brain
state by the BCI system. The timing sequence of a single trial
is shown in figure 1(b). The inter-trial interval varied from
1 to 1.5 s. Presentation of the stimuli was programmed in
Matlab 7.7.0 (The Mathworks, USA) using the Psychophysics
Toolbox 3.0 extensions [19, 20].

The experiment was run in a normal office environment
with no electromagnetic shielding. We carefully monitored the
daily online performance of the Chinese subjects and observed
a significant improvement on three consecutive training days
(see section 4.2). A 3 day training paradigm was therefore
deemed sufficient, and later, all German subjects completed
the same 3 day training program as well. On each day, the
same procedure was used: preceded by a training session of
20 trials (10 trials per task, no feedback during the training
sessions) to train the classifier, 4 online testing sessions with
the same number of trials were carried out. The inter-session
break was around 2–3 min. The total time for the experiment
per day was less than 30 min including breaks. The preceding
training session took only 3 min.

Since the characteristic of EEG may change over time
of day, all subjects were required to conduct the experiment
at the same time each day (2 subjects in the morning,
15 subjects in the afternoon and 5 subjects in the evening).
See section 3.2 for details of the online algorithm. At the end
of each testing session, the overall accuracy of the previous
session was presented to the subjects. The feedback after each
trial (a colored dot showing the classifier’s result) and after
each session (overall accuracy of the last session) helped the
subjects to adjust their control strategy.

2.4. EEG and EOG recording

A 32-channel EEG amplifier (ActiveTwo system, Biosemi
Instrumentation, The Netherlands) was used to record the
EEG at a sampling rate of 128 Hz. The 32 electrodes were
positioned according to the 10–20 system. Four additional
electrodes were used to record horizontal and vertical EOG
for eye movements for 9 out of the 18 subjects.

3. Analysis methods

3.1. SSVEP feature extraction: canonical correlation
analysis

Effective management of inter-subject variability is an
important issue in developing practical SSVEP BCI systems.
The standard approach is to select the set of electrode channels
carrying most information for each subject individually.
Methods for automatic channel selection use independent
component analysis for an optimal bipolar lead [21], or employ
optimization techniques for multi-channel EEG [22]. Here we
will use canonical correlation analysis (CCA) for automatic
channel selection as introduced in Bin’s study [23].

CCA is a way of measuring the linear relationship between
two multidimensional variables. Specifically, CCA tries to
find for each variable a basis vector that makes the correlation
between the projections of each variable on its basis vector
maximal [24, 25]. Recently, a parameter-free CCA-based
algorithm was developed that showed improved performance
over existing SSVEP BCI systems using gaze shifts [26].

We used the feature extraction procedure described in
[26]. CCA was used to find for each condition the maximum
linear correlation between the multi-channel EEG signals E

and a set of reference signals R by solving the following
problem:

max ρ = 〈E · R〉√
〈E2〉 · 〈R2〉

= wT
ECERwR√

wT
ECEEwEwT

RCRRwR

. (1)

The expressions 〈•〉 denote expectation over trials, wE and wR

are the basis vectors for E and R, CEE and CRR correspond to
the auto-covariance matrices and CER to the cross-covariance
matrix.

The set of reference signals corresponds to the stimulus
signals. A square-wave periodic stimulus signal at frequency
f , such as that used for the dot flicker, can be decomposed
into the Fourier series of its harmonics. We considered the
fundamental and second-harmonic frequencies, since only
these can be observed in the SSVEP:

R(t) =

⎛
⎜⎜⎝

sin(2πf t)

cos(2πf t)

sin(4πf t)

cos(4πf t)

⎞
⎟⎟⎠ . (2)

The number of non-zero solutions to equation (1) is limited
to the smallest dimensionality of E and R. In the online
BCI system, 17 electrodes were selected to constitute E and
the rank of R is 4. Thus, for each stimulation frequency,
CCA will yield four pairs of (wE,wR) and four corresponding
correlation coefficients ρ. When one set of dots is attended,
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(a)

(b)

Figure 2. The classification procedure. (a) Illustration of the single-trial classification. (b) Strategy for online adaptation of the classifier.

an enhanced correlation is expected between the EEG signal
E and the reference signal R at the corresponding frequency,
leading to larger correlation coefficients ρ.

Correlation coefficients were computed for each trial. As
the classifier was initialized using a small training set, only
the largest two coefficients at each stimulation frequency were
used to form the feature vector for classification to avoid over-
training, resulting in a four-dimensional vector for each trial.
The usage of the CCA method in our algorithm is depicted in
figure 2(a).

3.2. Classification

Since EEG signals from electrodes far away from occipital
cortex (e.g. frontal, temporal regions) do not contain much
information about SSVEP, the data from 17 electrodes over
central, parietal and occipital brain regions (Cz, CP1/2,
CP5/6, Pz, P3/4, P7/8, PO3/4, Oz, O1, O2) were selected
for the online classification. A pre-study showed that
higher classification accuracies were obtained using these 17
electrodes than using all 32 electrodes.

CCA was used to calculate the linear correlation between
the 17-channel EEG signals during the stimulation interval
and the two sets of reference signals at 10 Hz and 12 Hz
separately. The correlation coefficients extracted from the two
types of trials were then used as features to train or update a
Fisher linear classifier. The classification procedure is shown
in figure 2(a).

The classifier was initialized with data from the training
session. However, as the training session consisted of only ten
trials per class, the sample size might be small, thus making
the classifier unstable. Therefore, we developed the following
strategy to update the parameters of the classifier (figure 2(b)):
after each session, a new classifier was initialized with data of
the current session and the training dataset was computed. If
the accuracy of this classifier was equal to or higher than the
online accuracy of the current session (based on the training

dataset only), then the data of the current session were added
to the training dataset and the new classifier was used for the
next session. Otherwise, the training dataset and the previous
classifier were kept. By using this strategy, the classifier
could gradually increase the sample size for better and more
stable performance while excluding sessions with poor subject
performance.

While the parameters of the classifier were updated from
session to session on each training day, we did not transfer
them from day to day. On each training day, the subjects had
to start with the training session. The purpose of this design is
to investigate the adaptation of the human to the BCI system.
With no parameter transferred between days, the only thing
transferred is the human experience with the BCI system.

4. Results

4.1. Attentional modulation effects of SSVEP

SSVEPs at 10 Hz and 12 Hz, elicited by the two
flickering surfaces under the attended condition, show similar
spatial distributions over the parietal and occipital areas
(figure 3(a)). When subjects directed their attention to
one of the superimposed surfaces, the SSVEP amplitudes
at the corresponding driving frequency were enhanced over
approximately the same brain areas (figure 3(b)). A typical
modulation of SSVEPs at electrode Oz in the time domain is
shown in figure 3(c). In the spectral domain, the attentional
modulation of SSVEP amplitudes could be observed not
only at the fundamental, but also at the second-harmonic
frequencies, with larger effects at the fundamental frequencies
(figure 3(d)).

4.2. Online performances

For each testing session, the online classification accuracy
value was computed, resulting in four accuracy values
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(a)

(b)

(c) (d)

Figure 3. Attentional modulation effects of SSVEPs. (a) Topographies of grand-mean SSVEP amplitudes at the driving frequencies
(10/12 Hz) under the attended condition. The SSVEP amplitudes were standardized to z scores before computing grand averages in order to
deal with inter-subject variability. Positive and negative values indicate responses above and below the mean level of all 32 electrodes,
respectively. (b) Topographies of grand-mean attentional enhancement of SSVEP amplitudes. The differences of SSVEP amplitude
between attended and unattended condition were also transformed to z scores. (c) Time domain averages of 12 Hz SSVEP at electrode Oz in
subject 9. (d) Spectrogram at electrode Oz for the two attentional conditions for subject 4.

Figure 4. Averaged daily online classification accuracies for individual subjects.

per training day. The individual, daily averaged online
classification accuracies are given in figure 4. Subjects 1–9

are Chinese; subjects 10–18 are German. The classification
accuracies averaged overall subjects are 71.7 ± 12.3%,
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(a) (b)

(c) (d )

(e)

Figure 5. Effects of training on the SSVEP. (a–d) Scatter plots of the single-trial SSVEP amplitude response from subject 2 at electrode Oz.
(a) and (b) show the amplitude response on the first and last training days under two attentional conditions. (c) and (b) show the
discriminability of two types of trials before and after training. (e) Daily change of SSVEP amplitudes, subject 2, electrode Oz.

70.0 ± 14.7% and 72.6 ± 16.1% on the successive training
days. There is a significant increase of performance within
the Chinese group when comparing the performance of the
third day to the first day (p < 0.05, paired t-test). However,
no significant performance enhancement is found when the
German subjects are included (p > 0.5, paired t-test). On
the last training day, 2 subjects reached >90% accuracy;
another 6 subjects achieved a performance well above 80%;
5 subjects showed a classification accuracy between 60% and
80%; the remaining 5 subjects had classification accuracies
below 60%. In addition, the performance of the Chinese group
is significantly higher than the German group on each day
(p < 0.01, see figure 7(a)).

4.3. Training effects

Eight subject (subjects 1–8) showed an increase in daily
averaged performance during the training program. All of
them are Chinese subjects; none of the German subjects
showed positive training effects.

For subject 2, who showed a performance increase of
17.5% (from 65.0% on the first day to 82.5% on the third
day), the single-trial SSVEP amplitude on the first and last
training days at the stimulation frequencies (10/12 Hz) is
depicted in figures 5(a) and (b). SSVEP amplitudes at both
frequencies were strongly enhanced on the last training day,
no matter which surface was attended. Figures 5(c) and (d)
show that the observed enhancement of SSVEP amplitude
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(a) (b)

Figure 6. Correlation between SSVEP amplitude and online performance; Chinese subjects are represented by asterisks and German
subjects by circles.

(a) (b)

Figure 7. (a) Online performance of Chinese and German subjects, significant differences was observed on each day. (b) Individual
performances of five German subjects tested in both Tsinghua and UKE.

responses improves the discriminability of the single-trial data
under the two attentional tasks. Therefore, this enhancement
could be responsible for the increased single-trial classification
accuracy. Figure 5(e) shows the daily change of the SSVEP
amplitude response averaged over both attentional conditions.

By plotting the individual SSVEP amplitude response
against their online performance, a positive linear correlation
can be observed (figure 6) which was quantified by a Pearson
correlation analysis. The correlation coefficient between
online performance and 10 Hz/12 Hz SSVEP amplitude
is 0.765/0.647. T-test shows significant differences in the
SSVEP amplitudes at 10/12 Hz between Chinese subjects and
German subjects (both p < 0.05).

4.4. Different performances of the two cohorts

To check cross-laboratory reproducibility, we compared the
results between the two laboratories, i.e. Tsinghua and UKE.
Surprisingly, we observed a generally higher performance
of subjects at Tsinghua (see figure 7(a)). To rule out
technical differences that went unnoted, we repeated the same
experiment in both labs using a new cohort of German subjects.
5 subjects (4 male, 2 of them had participated in the previous
experiment, 1 female) were recorded at UKE and one week
later at Tsinghua. Since we were not interested in training
effects in this experiment, only the one-day performance
was assessed. No significant difference is found in their

performances (p > 0.5, paired t-test, see figure 7(b) for
individual performances).

4.5. EOG differences

The EOG artifacts we considered here are low-frequency
patterns caused by movements (such as rolling) of the eyes
[27, 28]. EOG activity has a wide frequency range, peaking
at frequencies below 4 Hz, and is most prominent over the
anterior head regions [29]. Figure 8 shows the averaged
EOG waveforms (4 Hz low-pass filtered) over all trials under
the two attentional conditions for every subject. The low
amplitude (�1 μV) indicates that there were no systematic eye
movements accompanying one specific task. The point-wise
t-test between ‘attend red surface’ and ‘attend blue surface’
trials was then carried out with all trials of each subject. No
significant difference of EOG signals under the two attentional
tasks could be found for all subjects for whom the EOG was
recorded (9 out of 18, t-test, p > 0.05).

5. Discussion and conclusion

5.1. Attentional modulation of SSVEP

Color and motion are two commonly used features for studying
non-spatial visual attention. Attention to either feature has
been shown to increase the neuronal response to a stimulus.
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(a)

(b)

Figure 8. Averaged EOG waveforms.

This response enhancement is a global effect that occurs
not only for attended location in the visual field, but also
for unattended locations if they show the same feature [30],
and involves several visual brain regions including V1, V2,
V3, V3A, V4 and MT+ [30–32]. In an electrophysiological
experiment with a similar paradigm to ours, selective attention
to red or blue dot populations with random motion enhanced
the amplitude of its frequency-tagged SSVEP, which was
localized to early visual areas of the brain by a source modeling
method [33].

In our study, two visual features, color and motion, are
combined to form two superimposed, illusory surfaces. As
we show here, attention to one of the illusory surfaces yields
a strong and robust modulation of SSVEP. This modulation is
strongest over occipital areas, which is in accordance with the
previous reports [30, 33]. Since we recorded brain activities on
the macroscopic scale using EEG, the attentional modulation
is likely to reflect a global effect in several visual brain areas
[30]. The online classification accuracy indicated that this

attentional modulation effect is large enough for single-trial
classification.

5.2. Comparison with other visual attention-based BCIs

A previous study indicated that spatial attention shifts may
have stronger modulatory effects on SSVEPs than non-spatial
attention shifts [15]. This result may be due to a comparatively
lower effectiveness of the stimuli employed in this study for
the non-spatial condition. The authors used two spatially
overlapping ‘linebox’ images, each of which consisted of a
group of equally spaced parallel vertical or horizontal lines
against a black background. The two images were displayed
using an additive color model, i.e. the displayed color turned
yellow if a red and a green line segment were shown at the
same position. This may weaken the elicited SSVEP response
because the two steady-state stimulations interacted with each
other, especially when considering single-trial data. In our
study, scattered dots were used to induce the perception of two
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superimposed, transparent surfaces. Although the perceived
surfaces were spatially superimposed, all the dots displayed
were physically non-overlapping. Because the dot size was
relatively small compared to the visual space covered by the
stimuli, the possibility for such overlaps was very low. If dots
did nonetheless overlap, we always presented blue dots in front
of red dots, thereby avoiding interferences between the two
steady-state stimulations and retaining strong responses and
optimal signal-to-noise ratio of SSVEP. None of the subjects
noted the priority of blue dots.

The spatial separation of stimuli required for paradigms
with spatial attention shifts may not fully exploit the SSVEP
signals when the attention is shifted covertly. In such
a paradigm, stimuli are perceived in the visual periphery
[10, 11], which is known to reduce SSVEP amplitude and
thus, signal-to-noise ratio [34]. In contrast, for non-spatial
attention shifts all stimuli can be presented in the center of the
visual field, thereby maximizing the SSVEP signal.

Our results show that with the non-spatial attention shifts
in our paradigm a similar performance as in SSVEP BCIs using
spatial attention can be achieved [10, 15]. The system could
probably be extended to a multi-target paradigm by adding
additional surfaces with different color, angular velocity and
flicker frequency.

Since healthy subjects were investigated in this study, it is
possible that they subconsciously followed the movement of
the attended surface, thereby generating an easily recognizable
signal which would be absent in patients. Analysis of the
EOG confirmed that no significant differences in EOG signals
between the two conditions were present. Even if the subjects
rolled their eyes to follow the rotation of the attended surface,
modulation of the SSVEP amplitude would likely not be
affected because the two sets of dots were mixed on the
screen. The most likely neural mechanism to modulate SSVEP
amplitude in this paradigm and hence, control the BCI, is
non-spatial visual covert attention. Therefore, our approach
provides an independent BCI system that does not rely on
muscle activity.

5.3. Co-adaptation and training effect

Co-adaptation between the human and the BCI is an important
issue investigated here. The BCI optimizes the algorithm
parameterization for better recognition of the human brain
activity, and the human adjusts his behavior for better control.

Adaptation of the BCI system comprised adaptation of a
filter for EEG signals so as to maximize discriminability of
the two mental states, and adaptation of the classifier. We
employed the CCA method to effectively deal with inter-
subject variability by finding the optimized spatial filter for
each subject for extracting stimulation-related brain activities.
Since we started from training sessions with only 3 min
duration, the heuristic classifier updating strategy shown
in figure 2(b) was used to deal with the small dataset
problem by gradually adding reliable data into the training set.
Offline simulation of the online classification process with
the proposed updating strategy showed better performances
than only using the initial data from the training session

Figure 9. The daily averaged classification accuracies simulated
offline with/without the proposed updating strategy described in 3.2.
The asterisk (∗) indicates significant difference at p = 0.05 level by
paired t-test.

(figure 9). However, the strategy for updating the classifier
should be further developed, since the current strategy is
not a mathematically strict solution for the small training set
problem.

To investigate the human adaptation to the BCI system,
we trained the classifier from scratch on consecutive days.
The general improvement in accuracy during the 3-day online
training program is due to adaptation and learning of the
subjects, suggesting that the subjects adjusted their brain
activities to maximize individual performances. For Chinese
subjects, our experiment showed a general improvement of
control accuracy by feedback training on three consecutive
days (30 min per day). After the adaptation on the first two
days, only a 3 min session is needed to train the classifier
and obtain an average performance of above 80% on the last
day.

It is also interesting to note that there was no training effect
within the German group. A closer look at German subjects’
performances reveals that 5 out of 8 German subjects showed
an improved performance from day 2 to day 3 (see figure 4).
The relatively low performance might be discouraging to the
subjects, hereby slowing down the training process. The
investigation should have been extended to a larger number
of sessions or training days in order to assess training effects
in the German group. However, since the primary target of
the current study is to present a new BCI paradigm and to give
an initial assessment of the stability of the results across time
and laboratories, investigation of the learning properties for
a longer observation period will be at the focus of follow-up
studies.

Previous studies on SSVEP BCI have shown that
performance could be improved over continuous sessions
[17, 18]. Here our results indicate that the improvement
can be consolidated and transferred from day to day. The
performance increase was reflected by an increase in SSVEP
amplitude (figure 5(a)). A plausible explanation is that the
trial-by-trial online feedback helped the subjects to adjust their
strategies for better concentration and attention, which enabled
enhanced perception of steady-state visual stimulation.
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5.4. Cross-laboratory reproducibility

The comparison of the classification accuracies between the
two labs revealed an unexpected difference with a statistical
significance at the 1% level. Despite having taken great efforts
to exclude technical differences as a possible cause (using same
model and brand of hardware, verifying the timing, using
identical software), average performance was significantly
higher in the Chinese cohort on each of the 3 days. The
results of a repetition of the experiment in both labs, using an
identical cohort of subjects, confirm that technical differences
in the setup can be excluded as a simple explanation.

It is not clear which factors may account for the significant
group difference in performance between the Chinese subjects
and German subjects. It is interesting to observe lower SSVEP
amplitudes in the German group and the positive correlation
between SSVEP amplitude and performance (see figure 6).
It is likely that certain parameters in the current paradigm
(e.g. stimulation frequencies, colors, motion) might not be
optimal for German subjects. Finding the optimal parameters
for individual subjects should be taken into consideration in
further studies. However, exploration of possible causes is
beyond the scope of this paper. The results presented here
should be seen as a demonstration of the range and variability
in the performance of the proposed BCI system.

5.5. Further directions with SSVEP BCIs based on visual
attention

Paralyzed patients have been reported to be trained to use BCI
on the basis of P300 evoked potential, self-regulation of slow
cortical potential (SCP) or sensorimotor rhythm (SMR) (see
[35] for a review). Although SSVEP BCIs based on gaze
direction have been demonstrated to have good operability
in challenging environments (electrical noise, uncontrolled
distracters, etc) [4, 16, 18, 34, 36, 37], they are not frequently
used for patients. The critical point is that patients with
good control of their gaze direction may have other means
of communication (eye tracker, etc) than BCI.

The BCI system proposed here requires no head or
eye movements, which makes it potentially useful for those
patients with substantial head or ocular motor impairments.
The BCIs currently used in clinical application utilize either
voluntary modulation of transient response to external stimuli
(such as P300 evoked potential) or self-regulation of internal
states (such as SCP and SMR) [35, 38–43]. In our study, the
subjects operate the system by self-regulating the continuous
responses of the external stimuli, which is different from the
existing designs. Therefore, the proposed BCI system, as
well as other visual attention based SSVEP BCIs [10, 15],
could be considered as an additional approach for improving
communication of paralyzed patients.
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[35] Kübler A and Birbaumer N 2008 Brain–computer interfaces
and communication in paralysis: extinction of goal directed
thinking in completely paralysed patients? Clin.
Neurophysiol. 119 2658–66

[36] Müller-Putz G R, Scherer R, Brauneis C and Pfurtscheller G
2005 Steady-state visual evoked potentials (SSVEP)-based
communication: impact of harmonic frequency components
J. Neural Eng. 2 123–30

[37] Gao X, Xu D, Cheng M and Gao S 2003 A BCI-based
environmental controller for the motion disabled IEEE
Trans. Neural Syst. Rehabil. Eng. 11 137–40
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